Browse All

Current Filters

CLEAR FILTER x

TITLE

Assessing the variability of contours performed by DL algorithms in prostate MRI

Automated image segmentation of prostate MR elastography by dense-like U-net.

Author:Nader Aldoj  Federico Biavati  Sebastian Stober  Marc Dewey  Patrick Asbach  Ingolf Sack  

Session Type:Digital Poster  

Session Date:Thursday, 20 May 2021  

Topic:Prostate  

Session Name:Prostate: Deep Learning  

Program Number:4110  

Room Session:Concurrent 5  

Institution:Charité  Ovgu Magdeburg  

Classification of Cancer at Prostate MRI: Artificial Intelligence versus Clinical Assessment and Human-Machine Synergy

Deep learning for synthesizing apparent diffusion coefficient maps of the prostate: A tentative study based on generative adversarial networks

Deep learning reconstruction enables highly accelerated T2 weighted prostate MRI

Author:Patricia Johnson  Angela Tong  Paul Smereka  Awani Donthireddy  Robert Petrocelli  Hersh Chandarana  Florian Knoll  

Session Type:Digital Poster  

Session Date:Thursday, 20 May 2021  

Topic:Prostate  

Session Name:Prostate: Deep Learning  

Program Number:4122  

Room Session:Concurrent 5  

Institution:New York University School of Medicine  

Evaluation of the inter-reader reproducibility of the PI-QUALscoring system for prostate MRI quality

Few-shot Meta-learning with Adversarial Shape Prior for Zonal Prostate Segmentation on T2 Weighted MRI

Author:Han Yu  Varut Vardhanabhuti  Peng Cao  

Session Type:Digital Poster  

Session Date:Thursday, 20 May 2021  

Topic:Prostate  

Session Name:Prostate: Deep Learning  

Program Number:4107  

Room Session:Concurrent 5  

Institution:The University of Hong Kong  

Non-invasive Gleason Score Classification with VERDICT-MRI

Author:Vanya Valindria  Saurabh Singh  Eleni Chiou  Thomy Mertzanidou  Baris Kanber  Shonit Punwani  Marco Palombo  Eleftheria Panagiotaki  

Session Type:Digital Poster  

Session Date:Thursday, 20 May 2021  

Topic:Prostate  

Session Name:Prostate: Deep Learning  

Program Number:4120  

Room Session:Concurrent 5  

Institution:University College London  

A novel unsupervised domain adaptation method for deep learning-based prostate MR image segmentation

Author:Cheng Li  Hui Sun  Taohui Xiao  Xin Liu  Hairong Zheng  Shanshan Wang  

Session Type:Digital Poster  

Session Date:Thursday, 20 May 2021  

Topic:Prostate  

Session Name:Prostate: Deep Learning  

Program Number:4109  

Room Session:Concurrent 5  

Institution:Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences  

Prostate Cancer Detection Using High b-Value Diffusion MRI with a Multi-task 3D Residual Convolutional Neural Network

Prostate Cancer Risk Maps Derived from Multi-parametric MRI and Validated by Histopathology

Author:Matthew Gibbons  Jeffry Simko  Peter Carroll  Susan Noworolski  

Session Type:Digital Poster  

Session Date:Thursday, 20 May 2021  

Topic:Prostate  

Session Name:Prostate: Deep Learning  

Program Number:4121  

Room Session:Concurrent 5  

Institution:University of California, San Francisco  

Radiomics models based on ADC maps for predicting high-grade prostate cancer at radical prostatectomy: comparison with preoperative biopsy

Rapid submillimeter high-resolution prostate T2 mapping with a deep learning constrained Compressed SENSE reconstruction

Reduction of B1-field induced inhomogeneity for body imaging at 7T using deep learning and synthetic training data.

Author:Seb Harrevelt  Lieke Wildenberg  Dennis Klomp  C.A.T. van den Berg  Josien Pluim  Alexander Raaijmakers  

Session Type:Digital Poster  

Session Date:Thursday, 20 May 2021  

Topic:Prostate  

Session Name:Prostate: Deep Learning  

Program Number:4123  

Room Session:Concurrent 5  

Institution:TU Eindhoven  UMC Utrecht  

The repeatability of deep learning-based segmentation of the prostate, peripheral and transition zones on T2-weighted MR images

Repeatability of Radiomic Features in T2-Weighted Prostate MRI: Impact of Pre-processing Configurations

Sensitivity of radiomics to inter-reader variations in prostate cancer delineation on MRI should be considered to improve generalizability

T2-Weighted MRI-Derived Texture Features in Characterization of Prostate Cancer