Browse All

Current Filters

CLEAR FILTER x

TITLE

Addition of peritumoral area improves T1-weighted texture-based prediction of glioblastoma multiforme progression

Author:George Zenzerovich  Tim Duong  

Institution:Stony Brook University  

Session Type:Digital Poster  

Session Live Q&A Date:Digital Poster (All Week)  

Topic:Brain tumors  

Session Name:Brain Tumour: Radiomics  

Program Number:1727  

Room Live Q&A Session:

Artificial Intelligence for Predicting Pathological Complete Response to Neoadjuvant Chemotherapy from MRI and Prognostic Clinical Features

Author:Hongyi Duanmu  Pauline Huang  Srinidhi Brahmavar  Fusheng Wang  Tim Q Duong  

Institution:Stony Brook University  

Session Type:Oral  

Session Live Q&A Date:Monday, 10 August 2020  

Topic:Cancer Imaging: Machine Learning & Advanced Imaging  

Session Name:Cancer Imaging: Machine Learning  

Program Number:0267  

Room Live Q&A Session:Monday Parallel 5  

Artificial Intelligence Prediction of Breast Cancer Pathologic Complete Response from Axillary Lymph Node MRIs

Blood flow MRI of the mouse optic nerve head

Author:Eric Muir  Timothy Duong  

Institution:Stony Brook University  

Session Type:Digital Poster  

Session Live Q&A Date:Digital Poster (All Week)  

Topic:MR Elastography and Perfusion  

Session Name:Elastography & Perfusion  

Program Number:3316  

Room Live Q&A Session:

Cross-Field Strength and Cross-Vendor Reliability of Quantitative MR-based Breast Density (MagDensity)

Author:Renee Cattell  Shenglan Chen  Jie Ding  Chuan Huang  

Institution:Stony Brook University  Li Ka Shing Faculty of Medicine, The University of Hong Kong  

Session Type:Digital Poster  

Session Live Q&A Date:Digital Poster (All Week)  

Topic:Quantitative MRI  

Session Name:Quantitative MRI 2  

Program Number:3807  

Room Live Q&A Session:

Deep learning based fully automated screening pipeline for abnormal bone density using a short lumbar Dixon sequence

Impaired blood flow and vascular reactivity in the choroid in diabetic mice

Improvement of Radiomics Prediction by Robustness Preselection

Increased Connectivity Correlated to Severity of Autism in a Cohort of High Functioning Autism and Major Depressive Disorder

Author:Mario Serrano-Sosa  Chuan Huang  Christine DeLorenzo  Kenneth Gadow  

Institution:Stony Brook University  

Session Type:Digital Poster  

Session Live Q&A Date:Digital Poster (All Week)  

Topic:Psychoradiology  

Session Name:Pairs of Psychoradiology Topics  

Program Number:1977  

Room Live Q&A Session:

In-vivo measurements of physiological optics of mouse crystallin lens using MRI

PET Image Denoising Using Structural MRI with a Dilated Convolutional Neural Network

Prediction of response to neoadjuvant chemotherapy for nasopharyngeal carcinoma using pretreatment MRI: a validated radiomics nomogram

Structural alterations in functional movement disorders: a diffusion weighted imaging study

Author:Silvina Horovitz  Jacob Parker  Patrick Bedard  Carine Maurer  Mark Hallett  

Institution:NINDS - NIH  Stony Brook University  

Session Type:Digital Poster  

Session Live Q&A Date:Digital Poster (All Week)  

Topic:Psychoradiology  

Session Name:Neuropsychiatric Disorders  

Program Number:1968  

Room Live Q&A Session:

Texture-based radiomics of peritumoral tissue predict subsequent progression into cancer in Glioblastoma Multiforme

Author:Ike Zhang  Tim Duong  

Institution:Stony Brook University  

Session Type:Digital Poster  

Session Live Q&A Date:Digital Poster (All Week)  

Topic:Brain tumors  

Session Name:Brain Tumour: Radiomics  

Program Number:1731  

Room Live Q&A Session:

Transfer Learning-Based Preoperative Prediction of Lymph Node Metastasis

Author:Renee Cattell  Jie Ding  Shenglan Chen  Chuan Huang  

Institution:Stony Brook University  

Session Type:Oral  

Session Live Q&A Date:Wednesday, 12 August 2020  

Topic:Machine Learning, Imaging Optimization, and Cancer  

Session Name:Machine Learning in Body MRI  

Program Number:0809  

Room Live Q&A Session:Wednesday Parallel 3  

Weakly Supervised Exclusion of Non-Tumoral Enhancement in Low Volume Dataset for Breast Tumor Segmentation