Browse All

Current Filters

CLEAR FILTER x

TITLE

Addressing the need for less MRI sequence dependent DL-based segmentation methods: model generalization to multi-site and multi-scanner data

Deep convolution neural network exploration for super resolution of abdominal 3D mDixon scans

Author:Johannes Peeters  Marcel Breeuwer  

Institution:Philips  Eindhoven University of Technology  

Session Type:Digital Poster  

Session Live Q&A Date:Digital Poster (All Week)  

Topic:Abdominopelvic MRI - Benign  

Session Name:Machine Learning & Radiomics in Body MRI  

Program Number:2601  

Room Live Q&A Session:

Fully automated assessment of myocardial ischemic burden – a joint perfusion and viability mapping approach

Fully automated quantification of left ventricular scar in patients with ischemic heart disease using deep learning and Gaussian mixture models

Generation of realistic and heterogeneous virtual population of cardiovascular magnetic resonance simulated images

Minimizing false streamlines in anatomically constrained tractography for neurosurgery guidance in patients with brain neoplasms

Author:Daniel Krahulec  Ahmed Radwan  Stefan Sunaert  Maarten Versluis  Kim van de Ven  Marcel Breeuwer  

Institution:KU Leuven  Philips Healthcare  Eindhoven University of Technology  

Session Type:Digital Poster  

Session Live Q&A Date:Digital Poster (All Week)  

Topic:Brain tumors  

Session Name:Brain Tumour: Diffusion Imaging  

Program Number:1738  

Room Live Q&A Session:

Rapid free breathing multi-slice radial CINE MRI using a patient sensing camera

Realistic MRI simulation pipeline for anatomically variable normal young, aging and diseased brain

Simulated CMR images can improve the performance and generalization capability of deep learning-based segmentation algorithms

Towards Realistic Cardiac MR Image Simulation; Inclusion of the Endocardial Trabeculae in the XCAT Heart Anatomy