

# Ins and Outs of Biological Tissue Bi-exponential Quadrupolar NMR Signal Relaxation:

## There is No Bound Sodium

Charles S. Springer, Jr.

Oregon Health & Science University / Portland, Oregon

Among the most abundant magnetic atomic nuclei in biology, three have the spin quantum number  $l = 3/2$ . These are:  $^{23}\text{Na}$ ,  $^{35}\text{Cl}$ , and  $^{39}\text{K}$ .<sup>1</sup> In tissue, these elements exist almost exclusively as the mobile mono-aquoions,  $\text{Na}_{\text{aq}}^+$ ,  $\text{Cl}_{\text{aq}}^-$ , and  $\text{K}_{\text{aq}}^+$ . Since they are isoelectronic with closed shell inert gas atoms Ne (for  $\text{Na}^+$ ) and Ar (for  $\text{Cl}^-$  and  $\text{K}^+$ ), they do not form covalent chemical bonds with other atoms. (A small atom fraction of biological Cl atoms, in the  $\text{Cl}^0$  oxidation state, forms single covalent bonds with C atoms.) Their homeostatic *tissue* concentrations are:  $[\text{Na}_t^+] = 44$ ,  $[\text{Cl}_t^-] = 56$ , and  $[\text{K}_t^+] = 47 \text{ mM}$ .<sup>1</sup> Most importantly, however, these are not their compartmental concentrations.

The almost exclusive biological role of these species is manifest by their maintenance in homeostatic trans-(cell)membrane concentration gradients. Typical values are:  $[\text{Na}_i^+] = 15$ ,  $[\text{Na}_o^+] = 135 \text{ mM}$ ;  $[\text{Cl}_i^-] = 15$ ,  $[\text{Cl}_o^-] = 105 \text{ mM}$ ; and  $[\text{K}_i^+] = 150$ ,  $[\text{K}_o^+] = 5 \text{ mM}$ ,<sup>2</sup> where the “i” and “o” subscripts signify inside and outside cells, respectively. Taking the typical membrane potential ( $E_m$ ) to be that caused by homeostatic cellular  $\text{K}^+$  efflux, 90 mV (inside negative), the electrochemical potential free energy values are  $\Delta G_{\text{Na}} = -14.4 \text{ kJ/mol}$  for  $\text{Na}^+$  influx, and  $\Delta G_{\text{Cl}} = -3.62 \text{ kJ/mol}$  for  $\text{Cl}^-$  efflux. Continued expenditure of metabolic energy is required to sustain these conditions. Thus, the  $\text{Na}^+$  and  $\text{Cl}^-$  gradients serve to store chemical energy derived from ATP hydrolysis, and that of  $\text{K}^+$  maintains the cell membrane potential. These are absolutely vital functions for cell life, and are driven by the continual operation of the crucial plasma membrane  $\text{Na}^+, \text{K}^+$ -ATPase (NKA) enzyme, the “sodium pump.” Particularly prominent roles are found in excitatory signal transmission.

The *in vivo*  $^{23}\text{Na}$  signal is much larger than those of  $^{35}\text{Cl}$  and  $^{39}\text{K}$ .<sup>1</sup> And, obviously, the  $\text{Na}^+$  biological role is crucial. Thus, it has long been hoped  $^{23}\text{Na}$  MRI could prove of clinical benefit. However, realization has been difficult. Current human  $^{23}\text{Na}$  MRI voxel volumes are approximately 60  $\mu\text{L}$ . This means there are typically  $6 \times 10^6$  cells in a voxel. At best, quantitative  $^{23}\text{Na}$  MRI can assess the averaged, tissue concentration. However, as detailed above, this gives no information on the essential trans-cytoskeletal  $[\text{Na}^+]$  gradient. This is because  $[\text{Na}_t^+] = v_e[\text{Na}_o^+] + v_i[\text{Na}_i^+]$ , where  $v_e$  and  $v_i$  are the extra- and intracellular volume fractions, respectively. Clinical changes in  $[\text{Na}_t^+]$  can be caused by: a) changes in  $v_e (= 1 - v_i)$  at constant  $[\text{Na}_o^+]$ ,  $[\text{Na}_i^+]$ ; b) changes in  $[\text{Na}_o^+]$ ,  $[\text{Na}_i^+]$  (or both) at constant  $v_e$ ,  $v_i$ ; or c) some combination of these. This is the *Hilal ambiguity*.<sup>3</sup> Discriminating intra- and extracellular  $^{23}\text{Na}$  signals, either from living animals using a shift reagent<sup>4</sup> or from cell suspensions with no shift reagent,<sup>5</sup> does not resolve this confound. These approaches give only the  $v_i[\text{Na}_i^+]$  and  $v_e[\text{Na}_o^+]$  products. They cannot lead to  $\Delta G_{\text{Na}}$  mapping, an ultimate goal. ( $\Delta G_{\text{Na}} = RT\ln\{[\text{Na}_i^+]/[\text{Na}_o^+]\} + eFE_m$ :  $e$  is the electron electric charge and  $F$  the Faraday constant.) The  $[\text{Na}_i^+]$  and  $v_i$  values must be determined independently.

Complicating the situation further is the fact that  $^{23}\text{Na}$  is a spin 3/2 nucleus. Even when the latter is isolated (not J-coupled to another spin – the usual case for  $^{23}\text{Na}$ ), it has four spin states (energy levels).<sup>4,6-9</sup> This means a single  $^{23}\text{Na}$  nucleus in any particular  $\text{Na}^+$  molecular environment can exhibit one of three single quantum (SQ) resonances. This is dramatically different than the case for a spin 1/2 nucleus ( $^1\text{H}$ ) with only two spin states, and has led to much misinterpretation. The MRI world is accustomed to the fact that a single type of  $^1\text{H}_2\text{O}$  molecule in a single type of molecular environment gives only a single signal (one site: one resonance).

Fundamentally, an MR resonance has four properties: 1) intensity; 2) Larmor frequency ( $\nu_L$ ); 3) longitudinal relaxation rate constant,  $R_1 = 1/T_1$ ; and 4) transverse relaxation rate constant,  $R_2 = 1/T_2$ . Even for a single molecular environment, a spin 3/2 signal has its intensity partitioned into three relative values (0.3:0.4:0.3) determined by quantum mechanical principles.<sup>4,6-9</sup> Their resonance frequencies can be different ( $\nu_0 + \langle \nu_Q \rangle : \nu_0 : \nu_0 - \langle \nu_Q \rangle$ ), where  $\langle \nu_Q \rangle$  is the temporal mean quadrupolar spectroscopic splitting factor (“coupling constant;”  $\langle \nu_Q \rangle = \langle \omega_Q \rangle / 2\pi$ ).<sup>4,6-9</sup> These are usually referred to as one “central” and two “satellite” transitions.

A spin 3/2 nucleus has an *electric* quadrupole. Thus, its orientation, relative to the *magnetic* field ( $\mathbf{B}_0$ ) direction, depends on the orientation (in  $\mathbf{B}_0$ ) of the *electric* field *gradient* (EFG;  $d\mathbf{E}/dx$ ;  $q$ ) of its immediate molecular environment. The nucleus also has a *magnetic* dipole. So, the orientation of the latter in  $\mathbf{B}_0$  also depends on that of  $q$ . The  $^{23}\text{Na}$

nuclear quadrupole moment ( $Q$ ) is rather large ( $10 \text{ (fm)}^2$ ), and when a  $^{23}\text{Na}^+$  ion is “trapped” in an anisotropic site with a very large  $q$ , as is often the case in the solid state,  $v_Q$  for  $^{23}\text{Na}$  can approach 10 MHz.<sup>4</sup> The value of  $v_Q$  is proportional to  $e^2 q Q/h$ , where  $h$  is Planck’s constant. Thus in the solid state,  $q$  can be as great as  $10 \times 10^{30} \text{ (V/m)/nm}$ .

However, in any aqueous fluidic environment (such as biological tissue), there is much molecular motion. Fluctuation of  $q$  magnitude/orientation is characterized by a  $v_Q$  modulation correlation time constant,  $\tau_c$ . The mean  $\text{Na}_{\text{aq}}^+$  structure ( $\text{Na}(\text{OH}_2)_6^+$ ) is isotropic ( $q = 0$ ). However, because of hydration shell normal mode vibrations,  $\tau_c = \tau_v < 1 \text{ ps}$ ,  $\langle v_Q \rangle = 0$ . The central and two satellite resonances are isochronous. Upon temporal averaging, the square of  $v_Q$ ,  $v_Q^{\text{rms}} = 1 \text{ MHz}$ .<sup>4,7</sup>

Molecular motion also has significant consequences for the third and fourth signal properties, the relaxation rate constants. There are two SQ R’s for each:  $^{10}\text{R}_{1s}$  and  $^{10}\text{R}_{1f}$ , and  $^{10}\text{R}_{2s}$  and  $^{10}\text{R}_{2f}$ , where the s and f subscripts represent “slow” and “fast,” respectively. We will not dwell on  $^{10}\text{R}_{1s}$  and  $^{10}\text{R}_{1f}$  here, because their relationships to the spin states are complicated,<sup>7</sup> and they are rarely discriminated.

The behavior of  $^{10}\text{R}_{2s}$  and  $^{10}\text{R}_{2f}$ , however, is crucial. Fortunately, these can be identified with the central and satellite resonances, respectively. The very fast modulation in the  $\text{Na}_{\text{aq}}^+$  environment causes  $^{10}\text{R}_{2f}$  to equal  $^{10}\text{R}_{2s}$ . It is too fast for efficient relaxation. Thus, there is a single, narrow resonance with a single  $^{10}\text{R}_2$  value – a *homogeneous* resonance, with a single exponential transverse decay. We have termed this a *type d spectrum*.<sup>4,6-9</sup> It is also often said to be in the “extreme narrowing limit.”

The mean lifetime ( $\tau_M$ ) of the sodium-oxygen coordinate covalent bond in  $\text{Na}_{\text{aq}}^+$  is approximately one nanosecond. During its diffusional excursions in the tissue *milieu*, the  $\text{Na}_{\text{aq}}^+$  ion encounters other molecules and, sometimes, one inner coordination sphere water molecule is transiently replaced by (almost exclusively) an oxygen atom of the other molecule. This new sodium-oxygen bond provides a significant  $q$ , but does not last even a nanosecond. Encountering further molecules gives transient  $q$ ’s with all possible orientations in  $\mathbf{B}_0$ . Generally, there is no macroscopic orientational order in the surroundings.

Thus, a much slower modulation,  $10^3 \text{ MHz}$  ( $\tau_M^{-1}$ ), is superimposed on the fast, fundamental  $10^6 \text{ MHz}$  ( $\tau_v^{-1}$ ) fluctuation of  $v_Q$ .<sup>7</sup> Even if the other molecule is as small as 100 kDa, its rotational correlation time,  $\tau_r$ , is  $> 60 \text{ ns}$ . So, in the complete expression,  $\tau_c^{-1} = \tau_v^{-1} + \tau_M^{-1} + \tau_r^{-1}$ , only the first two terms are of any consequence:  $(60 \text{ ns})^{-1}$  is only 17 MHz.

Values of  $v_L$  for  $^{23}\text{Na}$  MR studies are tens of MHz. If the slow  $v_Q$  modulation ( $\tau_M^{-1}$ ) is near or even less than  $\omega_L$  ( $2\pi v_L$ ), and has sufficient amplitude (significant  $q$  values), it acts particularly to catalyze (increase)  $^{10}\text{R}_{2f}$ , which is more sensitive to slow fluctuations than is  $^{10}\text{R}_{2s}$ .<sup>7</sup> The  $^{10}\text{R}_{2f}$  and  $^{10}\text{R}_{2s}$  values become different:  $^{10}\text{R}_{2f} > ^{10}\text{R}_{2s}$ . Thus, though the resonances remain isochronous, and the satellite transition remains *homogeneous*, the transverse relaxation becomes bi-exponential. We termed this a *type c spectrum*.<sup>4,6-9</sup>

In biological tissue, the *type c* condition obtains almost exclusively for the  $^{23}\text{Na}$  resonance. [More restricted conditions (with some macroscopic orientational order), *type b* and *type a*,<sup>4,6-9</sup> are very rare.] Unfortunately, however, *type c* has been often misinterpreted. Let us re-state the situation: the resonance consists of two signals with the same resonance frequency but two different  $^{10}\text{R}_2$  ( $T_2$ ) values. Depending on the experimental dead-time, some of the signal with  $^{10}\text{R}_{2f}$  usually decays before acquisition begins ( $^{10}T_{2f}$  values can be a few hundred  $\mu\text{s}$ ).<sup>6</sup> This has been called “ $^{23}\text{Na}$  MR invisibility,” and has often been interpreted that some Na is missing, or “bound.” But this is not the case. *All* tissue Na contributes to *each* signal; satellite and central. Some of the signal is missing, not some of the Na. The central transition acts very much like that of a spin  $1/2$  nucleus [the  $^{10}\text{R}_{2s}$  expression has no “secular” term].<sup>4,6-9</sup> The resonances of  $^{35}\text{Cl}$  and  $^{131}\text{Xe}$  ( $I = 3/2$ ) can exhibit similar spectra,<sup>7</sup> and no one thinks of Cl<sup>-</sup> or Xe as forming covalent bonds. This misinterpretation contributed to one of the most significant controversies in bio-science history.<sup>10</sup>

## References

1. Springer, "Measurement of metal cation compartmentalization in tissue by high-resolution metal cation NMR," *Ann. Rev. Biophys. Biophys. Chem.* **16**:375-399 (1987).
2. Milo, Phillips, Orme, "Cell Biology By the Numbers," Garland Science, New York (2016); p. 92.
3. Rooney, Li, Sammi, Bourdette, Neuwelt, Springer, "Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging," *NMR Biomed.* **28**:607-623 (2015).
4. Springer, "Biological Systems: Spin-3/2 Nuclei," *Encyclo. NMR* **2**:940-951 (1996).
5. Zhang, Poirier-Quinot, Springer, Balschi, "Discrimination of intra- and extracellular  $^{23}\text{Na}^+$  signals in yeast cell suspensions using longitudinal magnetic resonance relaxography," *J. Magn. Reson.* **205**:28-37 (2010).
6. Rooney, Springer, "The molecular environment of intracellular sodium:  $^{23}\text{Na}$  NMR relaxation," *NMR Biomed.* **4**:227-245 (1991).
7. Rooney, Springer, "A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems," *NMR Biomed.* **4**:209-226 (1991).
8. Xu, Barbara, Rooney, Springer, "Two-dimensional multiple-quantum NMR spectroscopy of isolated spin 3/2 systems. II.  $^{35}\text{Cl}$  Examples" *J. Magn. Reson.* **83**:279-298 (1989).
9. Rooney, Barbara, Springer, "Two-dimensional double-quantum NMR spectroscopy of isolated spin 3/2 systems:  $^{23}\text{Na}$  Examples," *J. Am. Chem. Soc.* **110**:674-681 (1988).
10. Hazlewood, Ed., "Physiochemical state of ions and water in living tissues and model systems," *Ann. NY Acad. Sci.* **204**: (1973).

contact: C. S. Springer; [springer@ohsu.edu](mailto:springer@ohsu.edu)