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Sodium (#Na) is one of the most abundant elements in the human body. Due to its physiological
importance, sodium magnetic resonance imaging (MRI) has drawn substantial attention to monitor the
viability and the status of biological tissues since its introduction in 1985 [1].

Sodium ions are found in intra- and extracellular compartments at concentrations of about 10-20 and
140-150 mmol/l, respectively. This concentration gradient, which is maintained by the energy
dependent Na+/K+-ATPase (the sodium-potassium pump), has a major importance in the physiology
of cells [2-4].

One of the goals of sodium MRI is the quantification of regional tissue sodium concentration (TSC)[5].
This parameter, which is the weighted average of intracellular and extracellular sodium concentrations,
is used to assess disease status, monitor disease progression and the outcome of therapeutic
interventions.

Several studies have shown that sodium MRI delivers relevant information about cellular viability in
pathologies of the central nervous system such as stroke [6-8], Alzheimer’s disease [9], Multiple
Sclerosis [10-14], Huntington’s disease [15], and tumors [16]. Sodium MRI has been also successfully
implemented to image the heart, kidneys, and the musculoskeletal apparatus [17-22].

Sodium MRI is, however, challenging because the sodium nucleus has a low NMR sensitivity, its
concentration in tissues is low (30 - 50 mmol/l in the brain), and its spin quantum number is 3/2. This
means that sodium ions have a nuclear quadrupolar moment that interacts with electric field gradients
surrounding the sodium ions. In biological tissues this can give rise to fast bi-exponential relaxations
of both, the transverse and longitudinal MR magnetizations [23].

In the human brain, for example, the transverse sodium signal decay exhibits a fast-relaxing component
in the range of 0.8-5 ms (T2) and a slow-relaxing component in the range of 15-30 ms (Tzs).
Longitudinal relaxation (T1), in theory bi-exponential too [23], has been only reported using mono-
exponential models with relaxation times in the range of 15-40 ms. In liquid environments, such as the
cerebrospinal fluid (CSF), the quadrupolar interaction averages to zero due to motional narrowing, and
a mono-exponential signal relaxation in the range of 50-60 ms is found for both transverse and
longitudinal relaxation times.
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To minimize signal losses and to access TSC measures free of bias effects caused by the fast-relaxing
bi-exponential signal, ultra-short echo times sequences (UTE), in which the echo time should ideally
be shorter than 0.5 ms, are now the standard choice [24].

Efficient MR sequences, with carefully chosen k-space trajectories such as twisted projection imaging
(TPI) [25,26], density adapted 3D-radial [27], stacks of spirals (SoS) [28], 3D cones [29], and FLORET
[30] are essential to maximize image signal-to-noise ratio (SNR) and to reach high image resolution,
thereby keeping total acquisitions times (TA) relatively short. Furthermore, in the last decade sodium
MRI greatly benefitted from the use of high- and ultra-high magnetic fields (> 3T) [31-35].

Another very important aspect is the selection of the optimal radiofrequency (RF) coils, as they can
have a strong effect on final images. Besides the classical single-tuned or double-tuned sodium coils,
single-tuned phased-array coils can be used to improve SNR by making use of the increased sensitivity
of smaller elements [36].

The most common approach for mapping TSC consists in a spin-density (SD) weighted acquisition.
This is possible because of the short T; of sodium. In its simplest form, the SD approach consists in the
application of a short, non-selective 90° RF pulse immediately followed by a signal read-out that is
performed in presence of active gradients describing a k-space trajectory originating at the center of k-
space. After a relatively short repetition time (TR > 150 ms), which allows the spin system to relax,
the same pulse-acquire scheme is repeated in combination with another k-space trajectory until the k-
space is uniformly sampled.

Data acquired with non-Cartesian sequences is then reconstructed into images by either a non-uniform
Fourier transform, a gridding algorithm followed by a standard Fourier transform, or by iterative
reconstruction algorithms. Reconstructed images are then corrected for coil transmission field (B1*),
coil reception sensitivity (B1), and if required, for global saturation effects [31-33].

SD images are then transformed into TSC maps by means of a signal calibration curve. This is obtained
from one, two, or more reference phantoms of known sodium concentrations and known relaxation
times, placed in the same field-of-view (FOV). Alternatively, calibration phantoms can be scanned
separately with the same sequence parameters and same coil loading in a so-called phantom replacement
method.

The SD approach, however, suffers from sub-optimal SNR efficiency. Therefore, shorter TRs (100-120
ms) are generally adopted. Nevertheless, shorter TRs introduce saturation effects which could ideally
be corrected using a T1 map at the same resolution. However, sodium images are usually corrected
using a global T relaxation time, leading to quantification error of about 10% in liquid environments
[33].

New approaches for the measurement of TSC are emerging. These are based on steady-state types of
sequences [37] such as the variable flip angle approach, in which two acquisitions at two different flip
angles are used to compute simultaneously T; and spin density maps in short acquisition times and with
a high degree of accuracy [38].

In summary, TSC is a valuable biomarker that could be used in clinical practice to monitor tissue
viability and to support therapeutic decisions. Sodium MRI measurements require the use of dedicated
RF coils, dedicated MR sequences and dedicated reconstruction techniques. The use of a high- or ultra-
high magnetic field strength (> 3T) is not obligatory, but it is clearly beneficial in terms of SNR and
image resolution.
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