

MR Imaging of nX-nuclei (23Na and Friends) from Controversies to Potential Applications: Quantification of Tissue Sodium Concentration

Dr. Sandro Romanzetti, PhD: sromanze@ukaachen.de

Department of Neurology
RWTH Aachen University
Pauwelsstraße 30
52074 Aachen
Germany

Highlights

- Physiology of sodium
- Tissue viability
- Tissue Sodium Concentration (TSC)
- Selection of appropriate sequences
- The importance of the right hardware
- Corrections and signal calibrations
- New developments

Sodium (^{23}Na) is one of the most abundant elements in the human body. Due to its physiological importance, sodium magnetic resonance imaging (MRI) has drawn substantial attention to monitor the viability and the status of biological tissues since its introduction in 1985 [1].

Sodium ions are found in intra- and extracellular compartments at concentrations of about 10-20 and 140-150 mmol/l, respectively. This concentration gradient, which is maintained by the energy dependent Na^+/K^+ -ATPase (the sodium-potassium pump), has a major importance in the physiology of cells [2-4].

One of the goals of sodium MRI is the quantification of regional tissue sodium concentration (TSC)[5]. This parameter, which is the weighted average of intracellular and extracellular sodium concentrations, is used to assess disease status, monitor disease progression and the outcome of therapeutic interventions.

Several studies have shown that sodium MRI delivers relevant information about cellular viability in pathologies of the central nervous system such as stroke [6-8], Alzheimer's disease [9], Multiple Sclerosis [10-14], Huntington's disease [15], and tumors [16]. Sodium MRI has been also successfully implemented to image the heart, kidneys, and the musculoskeletal apparatus [17-22].

Sodium MRI is, however, challenging because the sodium nucleus has a low NMR sensitivity, its concentration in tissues is low (30 - 50 mmol/l in the brain), and its spin quantum number is 3/2. This means that sodium ions have a nuclear quadrupolar moment that interacts with electric field gradients surrounding the sodium ions. In biological tissues this can give rise to fast bi-exponential relaxations of both, the transverse and longitudinal MR magnetizations [23].

In the human brain, for example, the transverse sodium signal decay exhibits a fast-relaxing component in the range of 0.8-5 ms (T_{2f}) and a slow-relaxing component in the range of 15-30 ms (T_{2s}). Longitudinal relaxation (T_1), in theory bi-exponential too [23], has been only reported using mono-exponential models with relaxation times in the range of 15-40 ms. In liquid environments, such as the cerebrospinal fluid (CSF), the quadrupolar interaction averages to zero due to motional narrowing, and a mono-exponential signal relaxation in the range of 50-60 ms is found for both transverse and longitudinal relaxation times.

To minimize signal losses and to access TSC measures free of bias effects caused by the fast-relaxing bi-exponential signal, ultra-short echo times sequences (UTE), in which the echo time should ideally be shorter than 0.5 ms, are now the standard choice [24].

Efficient MR sequences, with carefully chosen k-space trajectories such as twisted projection imaging (TPI) [25,26], density adapted 3D-radial [27], stacks of spirals (SoS) [28], 3D cones [29], and FLORET [30] are essential to maximize image signal-to-noise ratio (SNR) and to reach high image resolution, thereby keeping total acquisitions times (TA) relatively short. Furthermore, in the last decade sodium MRI greatly benefitted from the use of high- and ultra-high magnetic fields ($\geq 3\text{T}$) [31-35].

Another very important aspect is the selection of the optimal radiofrequency (RF) coils, as they can have a strong effect on final images. Besides the classical single-tuned or double-tuned sodium coils, single-tuned phased-array coils can be used to improve SNR by making use of the increased sensitivity of smaller elements [36].

The most common approach for mapping TSC consists in a spin-density (SD) weighted acquisition. This is possible because of the short T_1 of sodium. In its simplest form, the SD approach consists in the application of a short, non-selective 90° RF pulse immediately followed by a signal read-out that is performed in presence of active gradients describing a k-space trajectory originating at the center of k-space. After a relatively short repetition time ($\text{TR} \geq 150\text{ ms}$), which allows the spin system to relax, the same pulse-acquire scheme is repeated in combination with another k-space trajectory until the k-space is uniformly sampled.

Data acquired with non-Cartesian sequences is then reconstructed into images by either a non-uniform Fourier transform, a gridding algorithm followed by a standard Fourier transform, or by iterative reconstruction algorithms. Reconstructed images are then corrected for coil transmission field (B_1^+), coil reception sensitivity (B_1), and if required, for global saturation effects [31-33].

SD images are then transformed into TSC maps by means of a signal calibration curve. This is obtained from one, two, or more reference phantoms of known sodium concentrations and known relaxation times, placed in the same field-of-view (FOV). Alternatively, calibration phantoms can be scanned separately with the same sequence parameters and same coil loading in a so-called phantom replacement method.

The SD approach, however, suffers from sub-optimal SNR efficiency. Therefore, shorter TRs (100-120 ms) are generally adopted. Nevertheless, shorter TRs introduce saturation effects which could ideally be corrected using a T_1 map at the same resolution. However, sodium images are usually corrected using a global T_1 relaxation time, leading to quantification error of about 10% in liquid environments [33].

New approaches for the measurement of TSC are emerging. These are based on steady-state types of sequences [37] such as the variable flip angle approach, in which two acquisitions at two different flip angles are used to compute simultaneously T_1 and spin density maps in short acquisition times and with a high degree of accuracy [38].

In summary, TSC is a valuable biomarker that could be used in clinical practice to monitor tissue viability and to support therapeutic decisions. Sodium MRI measurements require the use of dedicated RF coils, dedicated MR sequences and dedicated reconstruction techniques. The use of a high- or ultra-high magnetic field strength ($\geq 3\text{T}$) is not obligatory, but it is clearly beneficial in terms of SNR and image resolution.

References

1. Hilal, S.K., Maudsley, AA, Ra, JB, Simon, HE, Roschmann, P, Wittekoek, S, Cho, ZH, Mun, SK, In vivo NMR imaging of sodium-23 in the human head. *J. Comput. Assist. Tomogr.* 1985, 9, 1.
2. Rose AM, Valdes R, Understanding the sodium pump and its relevance to disease. *Clinical Chemistry* 1994, 40:1674–1685.
3. Murphy E, Eisner DA, Regulation of intracellular and mitochondrial sodium in health and disease. *Circulation Research* 2009, 104(3):292–303.

4. Syková, E, The extracellular space in the CNS: its regulation, volume and geometry in normal and pathological neuronal function. *The Neuroscientist* 1997, 3(1), 28-41.
5. Madelin G, Regatte R, Biomedical applications of sodium MRI in vivo, *Journal of Magnetic Resonance* 2013;38(3):511–529.
6. Thulborn K, Gindin T, Davis D, Erb P, Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and clinical studies, *Radiology* 1999;156-166.
7. Hussain M, Stobbe R, Bhagat Y, Emery D, Butcher K, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C, Sodium imaging intensity increases with time after human ischemic stroke, *Annals of Neurology* 2009;55-62.
8. Tsang A, Stobbe R, Asdaghi N, Hussain M, Bhagat Y, C. Beaulieu, Emery D, Butcher K, Relationship between sodium intensity and perfusion deficits in acute ischemic stroke, *Journal of Magnetic Resonance Imaging* 2011;33(1):41-47.
9. Mellon E, Pilkinton D, Clark C, Elliot M, Witschey WI, Borthakur A, Reddy R, sodium MR imaging detection of mild Alzheimer disease: preliminary study, *American Journal of Neuroradiology* 2009;978-984.
10. Inglese M, Madelin G, Oesingmann N, Babb J, Wu W, Stoeckel B, Herbert J, Johnson G, Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 Tesla, *Brain* 2010;133(3): 847-857.
11. Paling D, Solanky B, Riemer F, Tozer D, Wheeler-Kingshott C, Kapoor R, Golay X, Miller D, sodium accumulation is associated with disability and a progressive course in multiple sclerosis, *Brain* 2013;2305–2317.
12. Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzzone PJ, Pelletier J, Schad LR, Ranjeva J-P. Distribution of Brain Sodium Accumulation Correlates with Disability in Multiple Sclerosis: A Cross-sectional Na-23 MR Imaging Study. *Radiology*; 2012 Sep;264(3):859–67
13. Maarouf A, Audoin B, Konstandin S, Rico A, Soulier E, Reuter F, Le Troter A, Confort-Gouny , Cozzzone P, Guye M, Schad L, Pelletier J, Ranjeva JP, Zaaraoui W, Topography of brain sodium accumulation in progressive multiple Sclerosis, *Magn Reson Mater Phy* 2014;53-62.
14. Biller A, Pflugmann I, Badde S, Diem R, Wildemann B, Nagel A, Jordan J, Benkhedah N, Kleesiek J, sodium MRI in Multiple Sclerosis is Compatible with Intracellular sodium Accumulation and Inflammation-Induced Hyper-Cellularity of Acute Brain Lesions, *Scientific Reports* 2016; 6.
15. Reetz K, Romanzetti S, Dogan I, Saß C, Werner C, Schiefer J, Schulz J, Shah N, Increased brain tissue sodium concentration in Huntington's disease - a sodium study at 4T, *NeuroImage* 2012;517-524, 2012.
16. Thulborn KR, Lu A, Atkinson IC, Damen F, Villano JL. Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors. *Neuroimaging Clin. N. Am.* 2009 Nov;19(4):615–24.
17. Sandstede J, Pabst T, Beer M, Lipke C, Baurle K, Butter F, Harre K, Kenn W, Voelker W, Neubauer S, Han D, Assessment of myocardial infarction in humans with 23Na MR imaging: comparison with cine MR imaging and delayed contrast enhancement, *Radiology* 2001;221:222-228.
18. Bottomley PA. Sodium MRI in human heart: a review. *NMR in biomedicine*. 2016;29(2):187-196. doi:10.1002/nbm.3265.
19. Constantinides CD, Kraitchman DL, O'Brien K, Boada FE, Gillen J, Bottomley PA. Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI. *Magn. Reson. Med.* 2001; 46: 1144–1151.
20. Maril N, Rosen Y, Reynolds G, Ivanishev A, Ngo L, Lenkisky R, sodium MRI of the human kidney at 3 Tesla, *Magnetic Resonance in Medicine* 2006;56(6):1229-1234.
21. Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer M, Jerschow A, Regatte R, Rapid Isotropic 3D-sodium MRI of the Knee Joint In-vivo at 7T., *Journal of Magnetic Resonance Imaging* 2009;30(3):606–614.

22. Bangerter NK, Tarbox GJ, Taylor MD, Kaggie JD. Quantitative sodium magnetic resonance imaging of cartilage, muscle, and tendon. *Quantitative Imaging in Medicine and Surgery*. 2016;6(6):699-714. doi:10.21037/qims.2016.12.10.
23. Van Der Maarel JRC, Relaxation of Spin 3/2 in a non zero average electric field gradient, *Chemical Physics Letters* 1989;155(3):288-296.
24. Boada, FE, Christensen, JD, Huang-Hellinger, F R, Reese, TG, & Thulborn, KR (1994). Quantitative in vivo tissue sodium concentration maps: The effects of biexponential relaxation. *Magnetic Resonance in Medicine*, 32(2), 219–223. doi:10.1002/mrm.1910320210
25. Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR, Fast Three Dimensional sodium Imaging, *Magnetic Resonance in Medicine*, 1997;37:706-715.
26. Atkinson IA, Lu A, Thulborn KR, Clinically Constrained Optimization of flexTPI Acquisition Parameters for the Tissue Sodium Concentration Bioscale, *Magnetic Resonance in Medicine* 66:1089–1099 (2011)
27. Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR, sodium MRI using a density-adapted 3D radial acquisition technique. *Magnetic Resonance in Medicine* 62, 1565–1573, 2009.
28. Qian, Y., & Boada, F. E. (2012). AWSOS Pulse Sequence and High-resolution UTE Imaging. *Encyclopedia of Magnetic Resonance*. doi:10.1002/9780470034590.emrstm1297
29. Gurney PT, Hargreaves B, Nishimura D, Design and analysis of a practical 3D CONES trajectory, *Magnetic Resonance in Medicine*, 2006;55:575–582.
30. Pipe J, Zwart N, Abousouan E, Robison R, Devaraj A, Johnson K, A New Design and Rationale for 3D Orthogonally Oversampled k-Space Trajectories, *Magnetic Resonance in Medicine* 2011;1303-1311.
31. Romanzetti S, Mirkes CC, Fiege DP, Celik A, Felder J, Shah NJ Mapping tissue sodium concentration in the human brain: a comparison of MR sequences at 9.4Tesla. *Neuroimage*. 2014 Aug 1;96:44-53. doi: 10.1016/j.neuroimage.2014.03.079. Epub 2014 Apr 8.
32. Lommen J, Konstandin S, Krämer P, Shad L, Enhancing the quantification of tissue sodium, *NMR in Biomedicine*, 2015.
33. Mirkes CC, Hoffmann J, Shajan G , Pohmann R, Scheffler K, High-Resolution Quantitative Sodium Imaging at 9.4 Tesla, *Magnetic Resonance in Medicine* 2015; 73(1):342-351
34. Thulborn K, Lui E, Guntin J, Jamil S, Sun Z, Claiborne T, Atkinson I, Quantitative sodium MRI of the human brain at 9.4T provides assessment of tissue sodium concentration and cell volume fraction during normal aging, *NMR in Biomedicine* 2016;29:137-143.
35. Qian Y, Zhao T, Zheng H, Weimer J, Boada FE, High-Resolution sodium Imaging of Human Brain at 7 T, *Magnetic Resonance in Medicine* 2012;68:227–233
36. Benkhedah, N., Hoffmann, S. H., Biller, A., & Nagel, A. M. (2015). Evaluation of adaptive combination of 30-channel head receive coil array data in ^{23}Na MR imaging. *Magnetic Resonance in Medicine*, 75(2), 527–536. doi:10.1002/mrm.25572
37. Stobbe, R. W., & Beaulieu, C. (2015). Residual quadrupole interaction in brain and its effect on quantitative sodium imaging. *NMR in Biomedicine*, 29(2), 119–128. doi:10.1002/nbm.3376
38. Coste A, Boumezbeur F, Vignaud A, Madelin G, Reetz K, Bihan D, Lerman C, Romanzetti S, Variable Flip Angle Pipeline for in vivo Sodium Concentration Measurements (VaSCo), *Proc. Intl.Soc.Mag.Reson. Med.* (2017) 25, p. 2960.