In Vivo Potassium (³⁹K) MRI of the Human Heart at 7.0 Tesla: Feasibility Study

Daniel Wenz¹, Armin M. Nagel^{2,3}, Nicolas GR Behl³, Arthur W. Magill³, Reiner Umathum³, Andre Kuehne⁴, Thoralf Niendorf^{1,4}

¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin Germany, ²Institute of Radiology, University Hospital Erlangen, Erlangen, Germany, ³Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany, ⁴MRI.TOOLS GmbH, Berlin, Germany.

Target audience: Imaging scientists, clinical scientists, radiologists and experts interested in in vivo ³⁹K MRI

Introduction

Assessment and monitoring of viability of myocardial tissue is of profound clinical relevance and of prognostic value after an ischemic event¹. Potassium (K⁺) is the most abundant intracellular ion and plays a major role in myocardial physiology and viability^{2,3}. The sensitivity gain of ultrahigh field MR (B₀ \ge 7T) provides an opportunity to probe the K⁺ content of myocardial tissue in vivo with a spatial resolution and total acquisition time which could be acceptable for clinical applications. The goal of this study is to demonstrate the feasibility of in vivo ³⁹K MRI of the human heart at 7.0 Tesla. For this purpose preliminary in vivo ³⁹K/¹H images obtained from a healthy volunteer are presented.

Methods

 39 K/¹H images were obtained using a customized RF coil. The RF coil design includes two sections: a flat posterior section and a curved anterior section to conform to an average human torso. Each section contains a large loop (270x280mm) element tuned to resonant frequency of 39 K and two smaller loop elements (220x200mm) tailored for ¹H MRI (Figure 1). The 39 K loops were connected and driven in the Helmholtz mode. The ¹H loops were driven in quadrature via a power splitter. In vivo datasets were acquired with a 7.0 T whole-body system (Magnetom, Siemens, Erlangen, Germany). 39 K imaging of a healthy male volunteer (age 27 years, BMI = 25 kg/m²) was conducted using 3D-DAPR imaging technique (TR/TE = 30/0.7 ms, N_{proj} = 20.000, N_{avg}=3, total scan time = 30 min). Anatomical reference images were acquired using a gradient echo imaging technique: TR/TE = 6.6/3.3ms; acquisition time = 3 s.

Results

For ³⁹K MRI of the heart an isotropic spatial resolution of (14.6 x 14.6 x 14.6) mm³ was achieved within total scan time of 30 min. Based on qualitative assessment, ³⁹K images of the upper torso showed an acceptable signal-to-noise ratio for the heart and the thorax and back muscles (Figure 2). ³⁹K signal from the muscles appears to be stronger than that from the heart because of the proximity of this tissue to the ³⁹K loops and due to partial volume effects.

Discussion and Conclusion

This work demonstrates that *in vivo* ³⁹K MRI of the human heart at 7.0 Tesla is feasible. The nominal spatial resolution of (14.6 x 14.6 x 14.6) mm³ reported here is very much encouraging. All of the results were acquired under free breathing conditions; no cardiac triggering, cardiac gating or respiratory gating techniques were used in this study. To take the preliminary results shown here to the next level we will focus on the optimization of the imaging techniques used for ³⁹K. We also anticipate the acquisition of high spatial resolution ¹H images which will provide *a priori* knowledge for the reconstruction of the low resolution ³⁹K data sets. This approach will support the correction of partial volume effects intrinsic to the low spatial resolution ³⁹K data sets.

References

1. Parrish TB, et al., Theoretical Basis for Sodium and Potassium MRI of the Human Heart at 1.5 T, MRM 1997; 2. Carmeliet E., Cardiac Ionic Currents and Acute Ischemia: From Channels to Arrythmias, Physiological Reviews, 1999; 3. Haddy FJ, et al., Role of potassium in regulating blood flow and blood pressure, Am J Physiol Integr Comp Physiol, 2006

Figures

