Optimization of Iterative Reconstruction for correlated ³⁵Cl- and ²³Na-MRI

Sophia T. Maier¹, Ulrike Busolt², Armin M. Nagel^{1,3}, Reiner Umathum¹, Mark E. Ladd¹, and Nicolas G. R. Behl¹

¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, ²Mechanical and Medical Engineering, Academy Furtwangen University (HFU), Schwenningen, Germany, ³ Institute of Radiology, University Hospital Erlangen, Erlangen, Germany

Target Audience: Clinicians and physicists interested in ³⁵Cl MRI and iterative reconstruction methods.

Purpose:

Chloride is the most common anion and thus involved in important metabolic processes. Studies confirm an altered concentration of chlorine in diseased tissue¹. Due to the low SNR and short relaxation times of ³⁵Cl nuclei, ³⁵Cl-MRI plays a secondary role in functional imaging up to now. The in-vivo signal of ³⁵Cl is smaller by five orders of magnitude, ²³Na four compared to proton imaging. Therefore, special techniques such as the use of ultra-high-fields and iterative reconstruction are required to improve the image quality of ³⁵Cl- and ²³Na-MRI in order to get quantified statements in human tissue.

Methods:

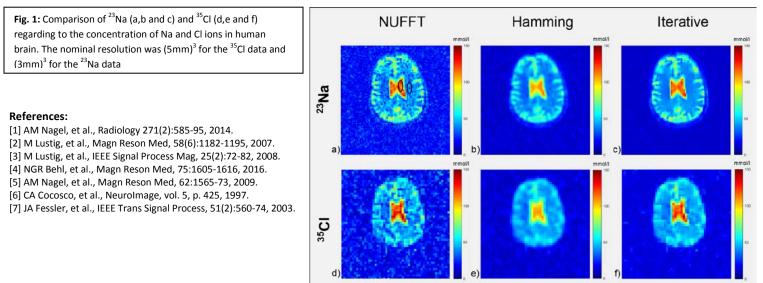
Phantom- and in-vivo-measurements were performed on a 7T whole-body MR scanner (Magnetom 7T, Siemens Healthcare, Erlangen, Germany) using a double-resonant (²³Na/³⁵Cl) quadrature birdcage coil (Rapid Biomed GmbH, Rimpar, Germany).

For the first time the reconstructions of ³⁵Cl-data were performed using an iterative Compressed-Sensing based^{2,3} reconstruction algorithm (3D-DLCS)⁴ in combination with a density-adapted 3D radial pulse sequence⁵. The measurement parameters were the following for an isotropic resolution of (5mm)³: TR=52.00ms, TE=0.6ms, α =90°, readout time T_{RO}=4.99ms, projections N_{proj}=1700 N_{av}=32. Parameter settings of ²³Na for correlation were: TR=160.00ms, TE=0.35ms, α =90°, readout time T_{RO}=9.98ms, projections N_{proj}=4000 N_{av}=1.

As a basis for an optimization of ³⁵Cl-MRI, simulated data were used⁶ and the improvement compared to the standard reconstruction, the Nonuniform fast Fourier transform (NUFFT)⁷, was analysed.

The quantification in human brain was achieved by gathering reference phantom measurements containing a model solution of 0.3-, 0.6-, and 0.9% NaCl placed in three different small tubes.

Additionally, one healthy volunteer (male, 30y) was examined and the ³⁵CI-MRI was quantified and compared to the ²³Na MRI


Results:

Thanks to the optimization of the iterative 3D-DLCS reconstruction algorithm for a resolution of 5mm (N_{proj} =1700, N_{av} =32) and parameter optimization (data consistency weighting λ = 4.5) a near optimal ³⁵Cl image quality was achieved.

Fig. 1 displays unfiltered and Hamming filtered NUFFT reconstructions, as well as the iterative 3D-DLCS reconstructions of both the ²³Na and ³⁵Cl images. The ³⁵Cl images display an increased concentration in white matter when compared to ²³Na while in CSF similar values are revealed.

Discussion and Conclusion:

In spite of the low signal intensity and the short relaxation times, ³⁵Cl-MRI allows the spatially resolved detection of the most common anion in the human body by using the 3D-DLCS algorithm in combination with a 3D radial sequence for the first time. The correlation to ²³Na-MRI demonstrates an increased concentration of ³⁵Cl in CSF and white matter. The increased spatial resolution is beneficial for diagnostic applications in tumor or muscle imaging.

