Influence of B₀ and B₁ inhomogeneity on measured cardiac ²³Na signal

Johanna Lott¹, Tanja Platt¹, Nicolas G.R. Behl¹, Peter Bachert¹, Mark E. Ladd¹, Armin M. Nagel^{1,2}

¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, ²Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany

Target audience: Scientists interested in quantitative cardiac ²³Na MRI.

Purpose: The sodium (²³Na) ion concentration is fundamentally connected to tissue physiology¹. In chronical and acute myocardial infarction the vital ²³Na concentration gradient between intracellular (10-15mM) and extracellular (145mM) sodium is altered and infarcted regions present an increased sodium concentration^{2,3}. However, cardiac ²³Na MRI is challenging even at ultra-high magnetic field strength ($B_0 \ge 7T$). In addition to low spatial resolution, fast relaxation times as well as respiratory and cardiac motion, inhomogeneities resulting from the B_0 and B_1 field can influence the accuracy of quantitative ²³Na MRI. In this study, B_0 and B_1 field maps were generated to correct phantom and in vivo data.

Methods: Phantom and in vivo data were acquired on a 7T whole-body system (MAGNETOM, Siemens Healthineers, Erlangen, Germany) with an oval-shaped birdcage coil⁴. A density-adapted 3D radial sampling⁵ scheme and a golden angle⁶ distribution was used with TR = 21ms, flip angle 61°, nominal spatial resolution (6mm)³, readout duration TRO =2.7ms, pulse length = 1.8ms, TE1 = 0.95ms and TE2 = 6ms. Cardiac activity was recorded simultaneously with an ECG gating device.

 B_0 field maps were generated through the phase difference of the two images with TE1 and TE2. A nominal spatial resolution of $(10mm)^3$ was used.

To produce B_1^+ field maps, the double angle method (DAM⁷) was applied. Two images with flip angles of 45° and 90° were acquired. To reduce T1 weighting, TRs of 100ms and 150ms were chosen for the 45° and 90° images, respectively. Further parameters were: nominal resolution (10mm)³, TE=1.55ms, TRO = 5ms, pulse length = 3ms. The receive sensitivity distribution B_1^- was estimated from the homogenous phantom image with flip angle 45° and the flip angle map. In the phantom measurements it was applied to an image with flip angle of 61°.

Each data set was reconstructed with a non-uniform Fast Fourier Transform using a Hamming filter. Data sets for B₀ and B₁ maps were interpolated and Gauss filtered with σ =12mm. With a registered binary mask based on ¹H images with a resolution of 0.6x0.6x1.4mm³ (c.f. Figure 4), the influence of B₀ and B₁ correction was measured. As this mask was acquired in the exhaled state and during the diastole, projections of the ²³Na measurement were reordered to reconstruct the image in the diastole (Δt = 0.6s) by a retrospective cardiac gating method³. The influence of respiratory motion was reduced by self-gated ²³Na MRI⁴ with separate reconstruction of the exhaled state.

Results: *Phantom:* The correction of B_0 inhomogeneity effects results in a vast improvement of image quality in the resolution phantom (c.f. Figure 1). The correction for B_1 effects with normalized B_1^+ and B_1^- field maps (c.f. Figure 2) lowers the coefficient of variation (CoV) of the homogenous phantom measurement from 8.8% to 0.1%.

In vivo: The correction of B₀ increases the signal within the heart muscle region of the binary mask by about 1%. In the heart region the relative flip angle accounts for 0.86 \pm 0.08. For B₁ corrected images, the CoV for blood decreases by 18% and the signal in the heart muscle increases by 5.6%.

Discussion: The presented B_0 and B_1 correction markedly improves image quality of the phantom images.

The relative flip angle map B_1^+ and the receive sensitivity map B_1^- for phantom measurements show a different distribution. Thus, a correction of B_1 inhomogeneity b

Figure 1: (a) B_0 map of the resolution phantom generated from two images with TE1 = 0.95ms and TE2 = 6ms. (b) Original magnitude image with a nominal resolution of (6mm)³.(c) B_0 corrected image of resolution phantom.

Figure 2: Normalized B_1^+ maps of phantom (a) and in vivo (c) data generated with two images with α =45° and 2α =90° for DAM. (b) Normalized B_1^- map of phantom data. (a) and (b) demonstrate that a correction of B_1 inhomogeneity based on reciprocity ⁶ is not valid for our setup.

Figure 3: (a) Off-resonance map of in vivo data with a nominal resolution of (10mm)³.(b) Relative difference map between corrected and not corrected image.

Figure 1: (a) Cardiac ²³Na MR image at $B_0=7T$ with binary mask based on ¹H. The acquisition time was 16min with 44000 projections. (b) Cardiac in vivo image corrected with B_1^+ . (c) Relative deviation map of corrected (b) and not corrected (a) image

measurements show a different distribution. Thus, a correction of B_1 inhomogeneity based on reciprocity⁸ is not a valid approach for our setup. Hence the correction of B_1 inhomogeneities is estimated by using the normalized B_1 map of the phantom.

Due to lower off resonances in the B_0 map of in vivo data compared to phantom measurements, the influence on the corrected image in particular the heart region is small. In contrast, the correction of B_1^+ and B_1^- inhomogeneity shows a larger effect. To further validate this method, simulations and measurements with different coil loadings are necessary to analyze the sensitivity of B_1^+ and B_1^- to coil loading.

Conclusion: This work demonstrates the handling of B_0 and B_1 inhomogeneities and analyzes its influence for ²³Na cardiac data. In particular, a valid method for the correction of B_1^- inhomogeneity effects might be a crucial point for future cardiac ²³Na MRI applications.

Acknowledgements:

This work was supported by iMed - the Helmholtz Initiative on Personalized Medicine.

References: 1. Madelin G et al. J Magn Reson Imaging. 2013, 38(3): 511-529; 2. Constantinides CD et al. Magn Reson Med. 2001, 46: 1144-1151; 3. Resetar A et al. Magn Reson Imaging. 2015, 33(9): 1091-1097; 4. Platt T et al. Magn Reson Med. 2018, doi: 10.1002/mrm.27103; 5. Nagel et al. Magn Reson Med 2009; (62):1565-1573 ; 6. Chan, Rachel W et al. J Magn Reson Med. 2009; 61(2): 354-363; 7. Insko EK et al. J Magn Reson Imaging. 1993, 103(1), 82-85; 8. Hoult DI Concepts in Mag Res 2000, 12(4): 173-187;