Keywords: Cardiovascular: Myocardium, Image acquisition: Quantification
Quantitative myocardial perfusion imaging is increasingly being used clinically as a valuable tool for improved detection of perfusion defects arising from coronary artery disease as well as microvascular disease. A number of frameworks exist for performing quantitative perfusion imaging with combinations of different (i) data acquisition and reconstruction schemes, (ii) post-processing methods and (iii) modeling approaches. The presentation will give an overview of methods used in each of the three major steps.[1] B. Zorach, P.W. Shaw, J. Bourque, S. Kuruvilla, P.C. Balfour, et al., Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease, Journal of Cardiovascular Magnetic Resonance, 20 (2018) 14.
[2] T. Kotecha, A. Martinez-Naharro, M. Boldrini, D. Knight, P. Hawkins, et al., Automated Pixel-Wise Quantitative Myocardial Perfusion Mapping by CMR to Detect Obstructive Coronary Artery Disease and Coronary Microvascular Dysfunction: Validation Against Invasive Coronary Physiology, JACC: Cardiovascular Imaging, 12 (2019) 1958-1969.
[3] H. Rahman, C.M. Scannell, O.M. Demir, M. Ryan, H. McConkey, et al., High-Resolution Cardiac Magnetic Resonance Imaging Techniques for the Identification of Coronary Microvascular Dysfunction, JACC: Cardiovascular Imaging, 14 (2021) 978-986.
[4] P. Kellman, M.S. Hansen, S. Nielles-Vallespin, J. Nickander, R. Themudo, et al., Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification, Journal of Cardiovascular Magnetic Resonance, 19 (2017) 43.
[5] T.H. Kim, N.A. Pack, L. Chen, E.V.R. DiBella, Quantification of myocardial perfusion using CMR with a radial data acquisition: comparison with a dual-bolus method, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance, 12 (2010) 45-45.
[6] J.K. Mendes, G. Adluru, D. Likhite, M.J. Fair, P.D. Gatehouse, et al., Quantitative 3D myocardial perfusion with an efficient arterial input function, Magnetic Resonance in Medicine, 83 (2020) 1949-1963.
[7] L.Y. Hsu, K.L. Rhoads, J.E. Holly, P. Kellman, A.H. Aletras, et al., Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans, Journal of magnetic resonance imaging : JMRI, 23 (2006).
[8] J.A. Pan, A.A. Robinson, Y. Yang, P.R. Lozano, S. McHugh, et al., Diagnostic Accuracy of Spiral Whole-Heart Quantitative Adenosine Stress Cardiovascular Magnetic Resonance With Motion Compensated L1-SPIRIT, Journal of Magnetic Resonance Imaging, 54 (2021) 1268-1279.
[9] D. Likhite, G. Adluru, N. Hu, C. McGann, E. DiBella, Quantification of myocardial perfusion with self-gated cardiovascular magnetic resonance, Journal of Cardiovascular Magnetic Resonance, 17 (2015) 1-15.
[10] Y. Tian, J. Mendes, B. Wilson, A. Ross, R. Ranjan, et al., Whole-heart ungated free-breathing cardiac phase resolved myocardial perfusion MRI by using Continuous Radial Interleaved simultaneous Multi-slice acquisitions at sPoiled steady-state (CRIMP), Magnetic Resonance in Medicine, 84 (2020) 3071– 3087.
[11] S. McElroy, K.P. Kunze, M.S. Nazir, P. Speier, D. Stäb, et al., Simultaneous multi-slice steady-state free precession myocardial perfusion with iterative reconstruction and integrated motion compensation, European Journal of Radiology, 151 (2022) 110286.
[12] J. Tran-Gia, D. Lohr, A.M. Weng, C.O. Ritter, D. Stäb, et al., A model-based reconstruction technique for quantitative myocardial perfusion imaging, Magn Reson Med, 76 (2016) 880-887.
[13] C.M. Scannell, A.D.M. Villa, J. Lee, M. Breeuwer, A. Chiribiri, Robust Non-Rigid Motion Compensation of Free-Breathing Myocardial Perfusion MRI Data, IEEE transactions on medical imaging, 38 (2019) 1812-1820.
[14] D. Likhite, G. Adluru, E. DiBella, Deformable and Rigid Model-Based Image Registration for Quantitative Cardiac Perfusion, in, Springer International Publishing, Cham, 2015, pp. 41-50.
[15] H. Xue, L.A.E. Brown, S. Nielles-Vallespin, S. Plein, P. Kellman, Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation, Magnetic Resonance in Medicine, 83 (2020) 712-730.
[16] N.A. Pack, E.V. DiBella, Comparison of myocardial perfusion estimates from dynamic contrast-enhanced magnetic resonance imaging with four quantitative analysis methods, Magn Reson Med, 64 (2010).
[17] P.S. Tofts, G. Brix, D.L. Buckley, J.L. Evelhoch, E. Henderson, et al., Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: Standardized quantities and symbols, Journal of Magnetic Resonance Imaging, 10 (1999) 223-232.
[18] J.B. Bassingthwaighte, C.Y. Wang, I.S. Chan, Blood-tissue exchange via transport and transformation by capillary endothelial cells, Circulation Research, 65 (1989) 997-1020.
[19] P.D. Gatehouse, A.G. Elkington, N.A. Ablitt, G.Z. Yang, D.J. Pennell, et al., Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance, Journal of magnetic resonance imaging : JMRI, 20 (2004).
[20] Y. Yang, C.M. Kramer, P.W. Shaw, C.H. Meyer, M. Salerno, First-pass myocardial perfusion imaging with whole-heart coverage using L1-SPIRiT accelerated variable density spiral trajectories, Magn Reson Med, 76 (2016) 1375-1387.
[21] H. Xue, R.H. Davies, L.A.E. Brown, K.D. Knott, T. Kotecha, et al., Automated Inline Analysis of Myocardial Perfusion MRI with Deep Learning, Radiol Artif Intell, 2 (2020) e200009.
[22] M. Jacobs, M. Benovoy, L.C. Chang, D. Corcoran, C. Berry, et al., Automated Segmental Analysis of Fully Quantitative Myocardial Blood Flow Maps by First-Pass Perfusion Cardiovascular Magnetic Resonance, IEEE Access, 9 (2021) 52796-52811.
[23] M. Jerosch-Herold, N. Wilke, A.E. Stillman, Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution, Medical physics, 25 (1998).