Keywords: Musculoskeletal: Cartilage, Musculoskeletal: Skeletal, Musculoskeletal: Tendons
Qualitative MRI is still the predominant MRI approach in musculoskeletal (MSK) applications. It has many advantages. such as excellent soft-tissue contrast, submillimeter resolution, and the ability to be quickly assessed by our visual system. However, qualitative MRI depends on well-trained radiologists, and the reading of MRI can be subjective, and differ from one reader to another due to several factors. In this talk, we will briefly discuss some of the limitations of qualitative MRI in MSK applications, including cartilage, bone, muscles, tendons, and ligaments.[1] I. Khodarahmi and J. Fritz, “The Value of 3 Tesla Field Strength for Musculoskeletal Magnetic Resonance Imaging,” Invest. Radiol., vol. 56, no. 11, pp. 749–763, 2021, doi: 10.1097/RLI.0000000000000801.
[2] B. Fritz and J. Fritz, “MR Imaging of Acute Knee Injuries,” Radiol. Clin. North Am., vol. 61, no. 2, pp. 261–280, Mar. 2023, doi: 10.1016/j.rcl.2022.10.005.
[3] K. E. Keenan et al., “Recommendations towards standards for quantitative MRI (qMRI) and outstanding needs,” J. Magn. Reson. Imaging, vol. 49, no. 7, pp. e26–e39, Jun. 2019, doi: 10.1002/jmri.26598.
[4] R. Kijowski, D. G. Blankenbaker, A. Munoz del Rio, G. S. Baer, and B. K. Graf, “Evaluation of the Articular Cartilage of the Knee Joint: Value of Adding a T2 Mapping Sequence to a Routine MR Imaging Protocol,” Radiology, vol. 267, no. 2, pp. 503–513, May 2013, doi: 10.1148/radiol.12121413.
[5] A. S. Chaudhari et al., “Diagnostic Accuracy of Quantitative Multicontrast 5-Minute Knee MRI Using Prospective Artificial Intelligence Image Quality Enhancement,” Am. J. Roentgenol., vol. 216, no. 6, pp. 1614–1625, Jun. 2021, doi: 10.2214/AJR.20.24172.
[6] C. S. Rajapakse, M. Bashoor-Zadeh, C. Li, W. Sun, A. C. Wright, and F. W. Wehrli, “Volumetric Cortical Bone Porosity Assessment with MR Imaging: Validation and Clinical Feasibility,” Radiology, vol. 276, no. 2, pp. 526–535, Aug. 2015, doi: 10.1148/radiol.15141850.
[7] G. Chang et al., “MRI assessment of bone structure and microarchitecture,” J. Magn. Reson. Imaging, vol. 46, no. 2, pp. 323–337, Aug. 2017, doi: 10.1002/jmri.25647.
[8] D. J. Theodorou, S. J. Theodorou, and Y. Kakitsubata, “Skeletal muscle disease: patterns of MRI appearances,” Br. J. Radiol., vol. 85, no. 1020, pp. e1298–e1308, Dec. 2012, doi: 10.1259/bjr/14063641.
[9] B. M. Damon, K. Li, and N. D. Bryant, “Magnetic resonance imaging of skeletal muscle disease,” in Handbook of Clinical Neurology, vol. 136, 2016, pp. 827–842. doi: 10.1016/B978-0-444-53486-6.00041-7.
[10] Y. Xie, S. Liu, J. Qu, P. Wu, H. Tao, and S. Chen, “Quantitative Magnetic Resonance Imaging UTE-T2* Mapping of Tendon Healing After Arthroscopic Rotator Cuff Repair: A Longitudinal Study,” Am. J. Sports Med., vol. 48, no. 11, pp. 2677–2685, Sep. 2020, doi: 10.1177/0363546520946772.
[11] C. R. Chu and A. A. Williams, “Quantitative MRI UTE-T2* and T2* Show Progressive and Continued Graft Maturation Over 2 Years in Human Patients After Anterior Cruciate Ligament Reconstruction,” Orthop. J. Sport. Med., vol. 7, no. 8, p. 232596711986305, Aug. 2019, doi: 10.1177/2325967119863056.