Keywords: Contrast mechanisms: Electromagnetic tissue properties, Contrast mechanisms: Susceptibility
Tissue magnetic susceptibility is an important source of imaging contrast used in susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM). In this presentation, I will explain and compare the basic technical aspects of SWI and QSM. While SWI focuses on enhancing contrast related to tissue magnetic susceptibility, QSM aims at quantifying the magnetic susceptibility distribution. QSM overcomes blooming artifacts in SWI and improves differentiation between paramagnetic and diamagnetic materials, such as iron and myelin. However, QSM requires a more complicated reconstruction pipeline.1. J. F. Schenck, The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23, 815-850 (1996).
2. J. H. Duyn, J. Schenck, Contributions to magnetic susceptibility of brain tissue. NMR Biomed 10.1002/nbm.3546 (2016).
3. S. Ropele, C. Langkammer, Iron quantification with susceptibility. NMR Biomed 30 (2017).
4. Y. Wang et al., Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. J Magn Reson Imaging 46, 951-971 (2017).
5. E. M. Haacke, Y. Xu, Y. C. Cheng, J. R. Reichenbach, Susceptibility weighted imaging (SWI). Magn Reson Med 52, 612-618 (2004).
6. E. M. Haacke, S. Mittal, Z. Wu, J. Neelavalli, Y. C. Cheng, Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30, 19-30 (2009).
7. Y. Wang, T. Liu, Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 73, 82-101 (2015).
8. E. M. Haacke et al., Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 33, 1-25 (2015).
9. C. Liu, W. Li, K. A. Tong, K. W. Yeom, S. Kuzminski, Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42, 23-41 (2015).
10. A. Deistung, F. Schweser, J. R. Reichenbach, Overview of quantitative susceptibility mapping. NMR Biomed 30 (2017).
11. S. Haller, E. M. Haacke, M. M. Thurnher, F. Barkhof, Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications. Radiology 299, 3-26 (2021).
12. M. Ayaz, A. S. Boikov, E. M. Haacke, D. K. Kido, W. M. Kirsch, Imaging Cerebral Microbleeds Using Susceptibility Weighted Imaging: One Step Toward Detecting Vascular Dementia. Journal of Magnetic Resonance Imaging 31, 142-148 (2010).
13. S. S. Oh et al., Improved susceptibility weighted imaging method using multi-echo acquisition. Magn Reson Med 72, 452-458 (2014).
14. K. Eckstein et al., Improved susceptibility weighted imaging at ultra-high field using bipolar multi-echo acquisition and optimized image processing: CLEAR-SWI. Neuroimage 237, 118175 (2021).
15. W. Liu et al., Imaging Cerebral Microhemorrhages in Military Service Members with Chronic Traumatic Brain Injury. Radiology 278, 536-545 (2016).
16. S. Haller et al., Cerebral Microbleeds: Imaging and Clinical Significance. Radiology 287, 11-28 (2018).
17. G. Sparacia, F. Agnello, A. Gambino, M. Sciortino, M. Midiri, Multiple sclerosis: High prevalence of the 'central vein' sign in white matter lesions on susceptibility-weighted images. Neuroradiol J 31, 356-361 (2018).
18. M. Absinta et al., Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo. JAMA Neurol 76, 1474-1483 (2019).
19. M. S. Perez Akly et al., Accuracy of nigrosome-1 detection to discriminate patients with Parkinson's disease and essential tremor. Neuroradiol J 32, 395-400 (2019).
20. J. P. Marques, R. Bowtell, Application of a fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering 25b, 65-78 (2005).
21. R. Salomir, B. D. De Senneville, C. T. W. Moonen, A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility. Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering 19b, 26-34 (2003).
22. K. Shmueli et al., Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62, 1510-1522 (2009).
23. L. de Rochefort, R. Brown, M. R. Prince, Y. Wang, Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn Reson Med 60, 1003-1009 (2008).
24. L. de Rochefort et al., Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63, 194-206 (2010).
25. S. D. Robinson et al., An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping. NMR Biomed 30 (2017).
26. T. Liu et al., Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn Reson Med 69, 467-476 (2013).
27. B. Wu, W. Li, A. V. Avram, S. M. Gho, C. Liu, Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-echo and multi-shot spirals. Neuroimage 59, 297-305 (2012).
28. F. Schweser, S. D. Robinson, L. de Rochefort, W. Li, K. Bredies, An illustrated comparison of processing methods for phase MRI and QSM: removal of background field contributions from sources outside the region of interest. NMR Biomed 30 (2017).
29. F. Schweser, A. Deistung, B. W. Lehr, J. R. Reichenbach, Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 54, 2789-2807 (2011).
30. T. Liu et al., A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed 24, 1129-1136 (2011).
31. B. Wu, W. Li, A. Guidon, C. Liu, Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 67, 137-147 (2012).
32. D. Zhou, T. Liu, P. Spincemaille, Y. Wang, Background field removal by solving the Laplacian boundary value problem. NMR Biomed 27, 312-319 (2014).
33. Y. Kee et al., Quantitative Susceptibility Mapping (QSM) Algorithms: Mathematical Rationale and Computational Implementations. IEEE Trans Biomed Eng 64, 2531-2545 (2017).
34. C. Langkammer et al., Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge. Magn Reson Med 79, 1661-1673 (2018).
35. Q. S. M. C. O. Committee et al., QSM reconstruction challenge 2.0: Design and report of results. Magn Reson Med 86, 1241-1255 (2021).
36. J. Yoon et al., Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage 179, 199-206 (2018).
37. S. Bollmann et al., DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping. Neuroimage 195, 373-383 (2019).
38. W. Jung, S. Bollmann, J. Lee, Overview of quantitative susceptibility mapping using deep learning: Current status, challenges and opportunities. Nmr in Biomedicine 35 (2022).
39. P. Ravanfar et al., Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Front Neurosci 15, 618435 (2021).
40. S. Vinayagamani et al., Quantitative Susceptibility Mapping: Technical Considerations and Clinical Applications in Neuroimaging. J Magn Reson Imaging 53, 23-37 (2021).
41. S. Liu et al., Improved MR venography using quantitative susceptibility-weighted imaging. J Magn Reson Imaging 40, 698-708 (2014).