Keywords: Contrast mechanisms: fMRI, Neuro: Brain function
This educational lecture will review classic and modern biophysical models of the fMRI signals, with a focus on models of the BOLD response. We will consider the “balloon” model framework, which seeks to model the BOLD response within a single voxel and its nonlinearities, as well as extensions such as hierarchical models based on mass balance inspired by newly-available high-resolution fMRI that account for the coupling of hemodynamics between adjacent voxels sampling across cortical depths. We will conclude with newer approaches based on realistic Vascular Anatomical Network or VAN models informed by optical imaging measurements of microvascular anatomy and dynamics.Báez-Yánez, M.G., Ehses, P., Mirkes, C., Tsai, P.S., Kleinfeld, D., Scheffler, K., 2017. The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI. NeuroImage 163, 13–23. https://doi.org/10.1016/j.neuroimage.2017.09.015
Báez-Yáñez, M.G., Siero, J., Petridou, N., 2020. Investigation of the dynamic fingerprint of the BOLD fMRI signal based on a novel statistical 3D cortical vascular network of the human brain. Proceedings of the International Society for Magnetic Resonance in Medcine 28, 1311.
Bandettini, P.A., Jesmanowicz, A., Wong, E.C., Hyde, J.S., 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30, 161–173.
Bandettini, P.A., Wong, E.C., 1995. Effects of biophysical and physiologic parameters on brain activation‐induced R2* and R2 changes: Simulations using a deterministic diffusion model. Int. J. Imaging Syst. Technol. 6, 133–152. https://doi.org/10.1002/ima.1850060203
Barrett, M.J.P., Tawhai, M.H., Suresh, V., 2012. Arteries dominate volume changes during brief functional hyperemia: evidence from mathematical modelling. NeuroImage 62, 482–492. https://doi.org/10.1016/J.NEUROIMAGE.2012.05.005
Berwick, J., Johnston, D., Jones, M., Martindale, J., Redgrave, P., McLoughlin, N., Schiessl, I., Mayhew, J.E.W., 2005. Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex. Eur. J. Neurosci. 22, 1655–1666. https://doi.org/10.1111/j.1460-9568.2005.04347.x
Blinder, P., Tsai, P.S., Kaufhold, J.P., Knutsen, P.M., Suhl, H., Kleinfeld, D., 2013. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16, 889–97. https://doi.org/10.1038/nn.3426
Boas, D.A., Jones, S.R., Devor, A., Huppert, T.J., Dale, A.M., 2008. A vascular anatomical network model of the spatio-temporal response to brain activation. NeuroImage 40, 1116–29. https://doi.org/10.1016/j.neuroimage.2007.12.061
Boxerman, J.L., Bandettini, P.A., Kwong, K.K., Baker, J.R., Davis, T.L., Rosen, B.R., Weisskoff, R.M., 1995. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn. Reson. Med. 34, 4–10.
Buxton, R., 2009. Introduction to Functional Magnetic Resonance Imaging. Principles and Techniques, 2nd ed. Cambridge University Press, Cambridge, UK. https://doi.org/10.1034/j.1600-0455.2002.430519_5.x
Buxton, R.B., 2012. Dynamic models of BOLD contrast. NeuroImage 62, 953–961. https://doi.org/10.1016/j.neuroimage.2012.01.012
Buxton, R.B., Uludağ, K., Dubowitz, D.J., Liu, T.T., 2004. Modeling the hemodynamic response to brain activation. NeuroImage 23 Suppl 1, S220-33. https://doi.org/10.1016/j.neuroimage.2004.07.013
Buxton, R.B., Wong, E.C., Frank, L.R., 1998. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 39, 855–64.
Chen, J.E., Fultz, N.E., Glover, G., Rosen, B.R., Polimeni, J.R., Lewis, L.D., 2020. Probing the neuronal and vascular origins of task contrast-dependent hemodynamic response functions. Proceedings of the International Society for Magnetic Resonance in Medcine 28, 1107.
Cheng, X., Berman, A.J.L., Polimeni, J.R., Buxton, R.B., Gagnon, L., Devor, A., Sakadžić, S., Boas, D.A., 2019. Dependence of the MR signal on the magnetic susceptibility of blood studied with models based on real microvascular networks. Magn. Reson. Med. 81, 3865–3874. https://doi.org/10.1002/mrm.27660
Devor, A., Tian, P., Nishimura, N., Teng, I.C., Hillman, E.M.C., Narayanan, S.N., Ulbert, I., Boas, D.A., Kleinfeld, D., Dale, A.M., 2007. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J. Neurosci. 27, 4452–9. https://doi.org/10.1523/JNEUROSCI.0134-07.2007
Drew, P.J., Shih, A.Y., Kleinfeld, D., 2011. Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proc. Natl. Acad. Sci. U. S. A. 108, 8473–8. https://doi.org/10.1073/pnas.1100428108
Fernández-Klett, F., Offenhauser, N., Dirnagl, U., Priller, J., Lindauer, U., 2010. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 22290–5. https://doi.org/10.1073/pnas.1011321108
Fisel, C.R., Ackerman, J.L., Buxton, R.B., Garrido, L., Belliveau, J.W., Rosen, B.R., Brady, T.J., 1991. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn. Reson. Med. 17, 336–47.
Friston, K.J., Mechelli, A., Turner, R., Price, C.J., 2000. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage 12, 466–77. https://doi.org/10.1006/nimg.2000.0630
Gagnon, L., Sakadžić, S., Lesage, F., Musacchia, J.J., Lefebvre, X., Fang, Q., Yücel, M.A., Evans, K.C., Mandeville, E.T., Cohen-Adad, J., Polimeni, J.R., Yaseen, M.A., Lo, E.H., Greve, D.N., Buxton, R.B., Dale, A.M., Devor, A., Boas, D.A., 2015. Quantifying the microvascular origin of bold-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe. J. Neurosci. 35, 3663–3675. https://doi.org/10.1523/JNEUROSCI.3555-14.2015
Gagnon, L., Sakadžić, S., Lesage, F., Pouliot, P., Dale, A.M., Devor, A., Buxton, R.B., Boas, D.A., 2016a. Validation and optimization of hypercapnic-calibrated fMRI from oxygen-sensitive two-photon microscopy. Philos. Trans. R. Soc. B Biol. Sci. 371. https://doi.org/10.1098/rstb.2015.0359
Gagnon, L., Smith, A.F., Boas, D.A., Devor, A., Secomb, T.W., Sakadžić, S., 2016b. Modeling of cerebral oxygen transport based on In vivo microscopic imaging of microvascular network structure, blood flow, and oxygenation. Front. Comput. Neurosci. https://doi.org/10.3389/fncom.2016.00082
Genois, É., Gagnon, L., Desjardins, M., 2020. Modeling of vascular space occupancy and BOLD functional MRI from first principles using real microvascular angiograms. Magn. Reson. Med. https://doi.org/10.1002/mrm.28429
Genois, É., Sakadžić, S., Devor, A., Boas, D.A., Desjardins, M., Gagnon, L., Guilbert, J., 2019. First principle modeling of simultaneous VASO and BOLD fMRI with two-photon microscopy for optimal quantification of CBV changes in humans, in: Madsen, S.J., Yang, V.X.D., Thakor, N. V. (Eds.), Clinical and Translational Neurophotonics 2019. SPIE, p. 29. https://doi.org/10.1117/12.2507463
Glover, G.H., 1999. Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9, 416–29.
Gould, I.G., Linninger, A.A., 2015. Hematocrit distribution and tissue oxygenation in large microcirculatory networks. Microcirculation 22, 1–18. https://doi.org/10.1111/micc.12156
Gould, I.G., Tsai, P., Kleinfeld, D., Linninger, A., 2017. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J. Cereb. Blood Flow Metab. 37, 52–68. https://doi.org/10.1177/0271678X16671146
Griffeth, V.E.M., Buxton, R.B., 2011. A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: Modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal. NeuroImage 58, 198–212. https://doi.org/10.1016/j.neuroimage.2011.05.077
Hartung, G., Pfannmoeller, J.P., Berman, A.J.L., Polimeni, J.R., 2022. Simulated fMRI responses using human Vascular Anatomical Network models with varying architecture and dynamics. Proceedings of the International Society for Magnetic Resonance in Medcine 30, 0682.
Havlíček, M., Ivanov, D., Poser, B.A., Uludağ, K., 2017. Echo-time dependence of the BOLD response transients – A window into brain functional physiology. NeuroImage 159, 355–370. https://doi.org/10.1016/j.neuroimage.2017.07.034
Havlíček, M., Uludağ, K., 2020. A dynamical model of the laminar BOLD response. NeuroImage 204, 116209. https://doi.org/10.1016/j.neuroimage.2019.116209
He, X., Yablonskiy, D.A., 2007. Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state. Magn. Reson. Med. 57, 115–126. https://doi.org/10.1002/mrm.21108
Heinzle, J., Koopmans, P.J., den Ouden, H.E.M., Raman, S.S., Stephan, K.E., 2015. A hemodynamic model for layered BOLD signals. NeuroImage 125, 556–70. https://doi.org/10.1016/j.neuroimage.2015.10.025
Hillman, E.M.C., Devor, A., Bouchard, M.B., Dunn, A.K., Krauss, G.W., Skoch, J., Bacskai, B.J., Dale, A.M., Boas, D.A., 2007. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. NeuroImage 35, 89–104. https://doi.org/10.1016/j.neuroimage.2006.11.032
Kim, J.H., Khan, R., Thompson, J.K., Ress, D., 2013. Model of the transient neurovascular response based on prompt arterial dilation. J. Cereb. Blood Flow Metab. 33, 1429–1439. https://doi.org/10.1038/jcbfm.2013.90
Kim, J.H., Ress, D., 2016. Arterial impulse model for the BOLD response to brief neural activation. NeuroImage 124, 394–408. https://doi.org/10.1016/j.neuroimage.2015.08.068
Kiselev, V.G., Posse, S., 1999. Analytical model of susceptibility-induced MR signal dephasing: effect of diffusion in a microvascular network. Magn. Reson. Med. 41, 499–509.
Kiselev, V.G., Strecker, R., Ziyeh, S., Speck, O., Hennig, J., 2005. Vessel size imaging in humans. Magn. Reson. Med. 53, 553–63. https://doi.org/10.1002/mrm.20383
Kleinfeld, D., Mitra, P.P., Helmchen, F., Denk, W., 1998. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. U. S. A. 95, 15741–6.
Liu, Z., Rios, C., Zhang, N., Yang, L., Chen, W., He, B., 2010. Linear and nonlinear relationships between visual stimuli, EEG and BOLD fMRI signals. NeuroImage 50, 1054–66. https://doi.org/10.1016/j.neuroimage.2010.01.017
Lorthois, S., Cassot, F., Lauwers, F., 2011a. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: Part I: Methodology and baseline flow. NeuroImage 54, 1031–1042. https://doi.org/10.1016/j.neuroimage.2010.09.032
Lorthois, S., Cassot, F., Lauwers, F., 2011b. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: Flow variations induced by global or localized modifications of arteriolar diameters. NeuroImage 54, 2840–2853. https://doi.org/10.1016/j.neuroimage.2010.10.040
Mandeville, J.B., Marota, J.J., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–89. https://doi.org/10.1097/00004647-199906000-00012
Markuerkiaga, I., Barth, M., Norris, D.G., 2016. A cortical vascular model for examining the specificity of the laminar BOLD signal. NeuroImage 132, 491–498. https://doi.org/10.1016/j.neuroimage.2016.02.073
Mildner, T., Norris, D.G., Schwarzbauer, C., Wiggins, C.J., 2001. A qualitative test of the balloon model for BOLD-based MR signal changes at 3T. Magn. Reson. Med. 46, 891–899. https://doi.org/10.1002/mrm.1274
Miller, K.L., Luh, W.M., Liu, T.T., Martinez, A., Obata, T., Wong, E.C., Frank, L.R., Buxton, R.B., 2001. Nonlinear temporal dynamics of the cerebral blood flow response. Hum. Brain Mapp. 13, 1–12.
Mullinger, K.J., Cherukara, M.T., Buxton, R.B., Francis, S.T., Mayhew, S.D., 2017. Post-stimulus fMRI and EEG responses: Evidence for a neuronal origin hypothesised to be inhibitory. NeuroImage 157, 388–399. https://doi.org/10.1016/j.neuroimage.2017.06.020
Obata, T., Liu, T.T., Miller, K.L., Luh, W.M., Wong, E.C., Frank, L.R., Buxton, R.B., 2004. Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: Application of the balloon model to the interpretation of BOLD transients. NeuroImage 21, 144–153. https://doi.org/10.1016/j.neuroimage.2003.08.040
Ogawa, S., Menon, R.S., Tank, D.W., Kim, S., Merkle, H., Ellermann, J.M., Uğurbil, K., 1993. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys. J. 64, 803–812. https://doi.org/10.1016/S0006-3495(93)81441-3
Peyrounette, M., Davit, Y., Quintard, M., Lorthois, S., 2018. Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex. PLoS One 13, e0189474. https://doi.org/10.1371/journal.pone.0189474
Pfannmoeller, J.P., Berman, A.J.L., Kura, S., Cheng, X., Boas, D.A., Polimeni, J.R., 2019. Quantification of draining vein dominance across cortical depths in BOLD fMRI from first principles using realistic Vascular Anatomical Networks. Proceedings of the International Society for Magnetic Resonance in Medcine 27, 3715.
Pfannmoeller, J.P., Gagnon, L., Berman, A.J.L., Polimeni, J.R., 2020. The role of rapid capillary resistance decreases in the BOLD response assessed through simulations in a realistic vascular network. Proceedings of the International Society for Magnetic Resonance in Medcine 28, 1101.
Polimeni, J.R., Lewis, L.D., 2021. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog. Neurobiol. 207, 102174. https://doi.org/10.1016/j.pneurobio.2021.102174
Pouliot, P., Gagnon, L., Lam, T., Avti, P.K., Bowen, C., Desjardins, M., Kakkar, A.K., Thorin, E., Sakadzic, S., Boas, D.A., Lesage, F., 2017. Magnetic resonance fingerprinting based on realistic vasculature in mice. NeuroImage 149, 436–445. https://doi.org/10.1016/j.neuroimage.2016.12.060
Reichold, J., Stampanoni, M., Lena Keller, A., Buck, A., Jenny, P., Weber, B., 2009. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29, 1429–1443. https://doi.org/10.1038/jcbfm.2009.58
Sadaghiani, S., Uğurbil, K., Uludağ, K., 2009. Neural activity-induced modulation of BOLD poststimulus undershoot independent of the positive signal. Magn. Reson. Imaging 27, 1030–1038. https://doi.org/10.1016/j.mri.2009.04.003
Schmid, F., Tsai, P.S., Kleinfeld, D., Jenny, P., Weber, B., 2017. Depth-dependent flow and pressure characteristics in cortical microvascular networks. PLOS Comput. Biol. 13, e1005392. https://doi.org/10.1371/journal.pcbi.1005392
Secomb, T.W., Hsu, R., Park, E.Y.H., Dewhirst, M.W., 2004. Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann. Biomed. Eng. 32, 1519–1529. https://doi.org/10.1114/B:ABME.0000049036.08817.44
Simon, A.B., Buxton, R.B., 2015. Understanding the dynamic relationship between cerebral blood flow and the BOLD signal: Implications for quantitative functional MRI. NeuroImage 116, 158–167. https://doi.org/10.1016/j.neuroimage.2015.03.080
Tian, P., Teng, I.C., May, L.D., Kurz, R., Lu, K., Scadeng, M., Hillman, E.M.C., De Crespigny, A.J., D’Arceuil, H.E., Mandeville, J.B., Marota, J.J.A., Rosen, B.R., Liu, T.T., Boas, D.A., Buxton, R.B., Dale, A.M., Devor, A., 2010. Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proc. Natl. Acad. Sci. U. S. A. 107, 15246–51. https://doi.org/10.1073/pnas.1006735107
Troprès, I., Grimault, S., Vaeth, A., Grillon, E., Julien, C., Payen, J.F., Lamalle, L., Décorps, M., 2001. Vessel size imaging. Magn. Reson. Med. 45, 397–408.
Uhlirova, H., Kılıç, K., Tian, P., Thunemann, M., Desjardins, M., Saisan, P.A., Sakadžić, S., Ness, T. V, Mateo, C., Cheng, Q., Weldy, K.L., Razoux, F., Vandenberghe, M., Cremonesi, J.A., Ferri, C.G., Nizar, K., Sridhar, V.B., Steed, T.C., Abashin, M., Fainman, Y., Masliah, E., Djurovic, S., Andreassen, O.A., Silva, G.A., Boas, D.A., Kleinfeld, D., Buxton, R.B., Einevoll, G.T., Dale, A.M., Devor, A., 2016. Cell type specificity of neurovascular coupling in cerebral cortex. Elife 5. https://doi.org/10.7554/eLife.14315
Uludağ, K., Müller-Bierl, B., Uğurbil, K., 2009. An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. NeuroImage 48, 150–65. https://doi.org/10.1016/j.neuroimage.2009.05.051
Vazquez, A.L., Noll, D.C., 1998. Nonlinear aspects of the BOLD response in functional MRI. NeuroImage 7, 108–18. https://doi.org/10.1006/nimg.1997.0316
Viessmann, O., Scheffler, K., Bianciardi, M., Wald, L.L., Polimeni, J.R., 2019. Dependence of resting-state fMRI fluctuation amplitudes on cerebral cortical orientation relative to the direction of B0 and anatomical axes. NeuroImage 196, 337–350. https://doi.org/10.1016/j.neuroimage.2019.04.036
Yablonskiy, D.A., Haacke, E.M., 1994. Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime. Magn. Reson. Med. 32, 749–763. https://doi.org/10.1002/mrm.1910320610
Yeşilyurt, B., Uğurbil, K., Uludağ, K., 2008. Dynamics and nonlinearities of the BOLD response at very short stimulus durations. Magn. Reson. Imaging 26, 853–862. https://doi.org/10.1016/j.mri.2008.01.008
Yeşilyurt, B., Whittingstall, K., Uğurbil, K., Logothetis, N.K., Uludağ, K., 2010. Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans. J. Cereb. Blood Flow Metab. 30, 449–58. https://doi.org/10.1038/jcbfm.2009.224
Zheng, Y., Johnston, D., Berwick, J., Chen, D., Billings, S., Mayhew, J., 2005. A three-compartment model of the hemodynamic response and oxygen delivery to brain. NeuroImage 28, 925–939. https://doi.org/10.1016/j.neuroimage.2005.06.042