Keywords: Contrast mechanisms: Flow, Cardiovascular: Vascular, Image acquisition: Machine learning
4D flow MRI can be used to visualize and quantify blood flow for the diagnosis and treatment of cardiovascular disease. However, 4D flow MRI has several limitations such as long acquisition times and inaccuracies in velocity estimations due to partial volume effects and phase errors. In recent years, machine learning (ML) techniques have been proposed to address these limitations. ML methods developed for 4D flow MRI include image reconstruction methods, super-resolution methods, and ML-based post-processing tools for phase correction and vessel delineation and the statistical evaluation of blood flow. This talk summarizes the latest ML advances in 4D flow MRI.1. Vishnevskiy, V., Walheim, J. & Kozerke, S. Deep variational network for rapid 4D flow MRI reconstruction. Nat Mach Intell 2, 228–235 (2020).
2. Haji-Valizadeh, H. et al. Highly accelerated free-breathing real-time phase contrast cardiovascular MRI via complex-difference deep learning. Magn Reson Med 86, 804–819 (2021).
3. Kim, D, Jen, M-L, Eisenmenger, LB, Johnson, KM. Accelerated 4D-flow MRI with 3-point encoding enabled by machine learning. Magn Reson Med. (2023)
4. Ferdian, E. et al. 4DFlowNet: Super-Resolution 4D Flow MRI Using Deep Learning and Computational Fluid Dynamics. Front Phys 8, (2020).
5. Rutkowski, D. R., Roldan-Alzate, A. & Johnson, K. Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data. Sci Rep (2021).
6. Dirix P., Buoso S., Peper E.S., Kozerke S. Synthesis of patient-specific multipoint 4D flow MRI data of turbulent aortic flow downstream of stenotic valves. Sci Rep. (2022)
7. Shit S, Zimmermann J, Ezhov I, Paetzold JC, Sanches AF, Pirkl C, Menze BH. SRflow: Deep learning based super-resolution of 4D-flow MRI data. Front Artif Intell. 2022
8. Kissas, G. et al. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput Methods Appl Mech Eng 358, 112623 (2020).
9. Fathi, M. F. et al. Super-resolution and denoising of 4D-flow MRI using physics-informed deep neural nets. Comput Methods Programs Biomed 197, 105729 (2020).
10. Ferdian, E., Dubowitz, D. J., Mauger, C. A., Wang, A. & Young, A. A. WSSNet: Aortic Wall Shear Stress Estimation Using Deep Learning on 4D Flow MRI. Front Cardiovasc Med 8, (2022).
11. You, S. et al. Deep Learning Automated Background Phase Error Correction for Abdominopelvic 4D Flow MRI. Radiology 302, 584–592 (2022).
12. Berhane, H. et al. Deep learning–based velocity antialiasing of 4D-flow MRI. Magn Reson Med 88, 449–463 (2022).
13. Bratt, A. et al. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. Journal of Cardiovascular Magnetic Resonance 21, 1–11 (2019).
14. Garcia, J., Beckie, K., Hassanabad, A. F., Sojoudi, A. & White, J. A. Aortic and mitral flow quantification using dynamic valve tracking and machine learning: Prospective study assessing static and dynamic plane repeatability, variability and agreement. JRSM Cardiovasc Dis 10, 2048004021999900 (2021).
15. Tsou, C.-H. et al. Using deep learning convolutional neural networks to automatically perform cerebral aqueduct CSF flow analysis. Journal of Clinical Neuroscience 90, 60–67 (2021).
16. Berhane, H. et al. Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning. Magn Reson Med 84, 2204–2218 (2020).
17. Garrido-Oliver, J. et al. Machine learning for the automatic assessment of aortic rotational flow and wall shear stress from 4D flow cardiac magnetic resonance imaging. Eur Radiol 1–11 (2022).
18. Bustamante, M., Viola, F., Engvall, J., Carlhäll, C.-J. & Ebbers, T. Automatic Time-Resolved Cardiovascular Segmentation of 4D Flow MRI Using Deep Learning. Journal of Magnetic Resonance Imaging (2022).
19. Corrado, P. A. et al. Fully automated intracardiac 4D flow MRI post-processing using deep learning for biventricular segmentation. Eur Radiol 1–10 (2022).
20. Corrado, P. A., Seiter, D. P. & Wieben, O. Automatic measurement plane placement for 4D Flow MRI of the great vessels using deep learning. Int J Comput Assist Radiol Surg 17, 199–210 (2022).
21. Niemann, U. et al. Cardiac cohort classification based on morphologic and hemodynamic parameters extracted from 4D PC-MRI data. arXiv preprint arXiv:2010.05612 (2020).
22. Franco, P. et al. Identification of hemodynamic biomarkers for bicuspid aortic valve induced aortic dilation using machine learning. Comput Biol Med 141, 105147 (2022).