Keywords: Image acquisition: Multiparametric, Image acquisition: Image processing, Image acquisition: Fast imaging
Synthetic images with flexibly adjustable contrasts can be generated from quantitative multi-parametric MRI. With the advancement of fast multi-parametric imaging, synthetic imaging provides a more efficient MR exam paradigm to obtain clinically useful contrasts. This talk will cover the technical aspect of synthetic imaging. It will present the i) basics of contrast synthesis; 2) fast quantitative multi-parametric acquisition and their recent advancement, including multidynamic multiecho (MDME), MR Fingerprinting (MRF), MR Multitasking, and Echo-Planar Time-resolved Imaging (EPTI); and 3) recent advancement of imaging synthesis methods including machine learning based approaches. We will also discuss the future directions of synthetic imaging.1. Bobman SA, Riederer SJ, Lee JN, Suddarth SA, Wang HZ, Drayer BP, MacFall JR. Cerebral magnetic resonance image synthesis. American journal of neuroradiology. 1985 Mar 1;6(2):265-9.
2. Gulani V, Schmitt P, Griswold MA, Webb AG, Jakob PM. Towards a single-sequence neurologic magnetic resonance imaging examination: multiple-contrast images from an IR TrueFISP experiment. Invest Radiol 2004; 39: 767–774.
3. Tanenbaum LN, Tsiouris AJ, Johnson AN, Naidich TP, DeLano MC, Melhem ER, Quarterman P, Parameswaran SX, Shankaranarayanan A, Goyen M, Field AS. Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. American journal of neuroradiology. 2017 Jun 1;38(6):1103-10.
4. Warntjes JB, Leinhard OD, West J, Lundberg P. Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magnetic Resonance in Medicine. 2008 Aug;60(2):320-9.
5. Blystad I, Warntjes JB, Smedby O, Landtblom AM, Lundberg P, Larsson EM. Synthetic MRI of the brain in a clinical setting. Acta radiologica. 2012 Dec;53(10):1158-63.
6. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance fingerprinting. Nature. 2013 Mar 14;495(7440):187-92.
7. Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med 2015;74(6):1621-1631.
8. Christodoulou AG, Shaw JL, Nguyen C, Yang Q, Xie Y, Wang N, Li D. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nature biomedical engineering. 2018 Apr;2(4):215-26.
9. Ma S, Wang N, Fan Z, Kaisey M, Sicotte NL, Christodoulou AG, Li D. Three‐dimensional whole‐brain simultaneous T1, T2, and T1ρ quantification using MR multitasking: method and initial clinical experience in tissue characterization of multiple sclerosis. Magnetic resonance in medicine. 2021 Apr;85(4):1938-52.
10. Wang F, Dong Z, Reese TG, Bilgic B, Katherine Manhard M, Chen J, Polimeni JR, Wald LL, Setsompop K. Echo planar time‐resolved imaging (EPTI). Magnetic resonance in medicine. 2019 Jun;81(6):3599-615.
11. Wang F, Dong Z, Reese TG, Rosen B, Wald LL, Setsompop K. 3D Echo Planar Time-resolved Imaging (3D-EPTI) for ultrafast multi-parametric quantitative MRI. Neuroimage. 2022 Apr 15;250:118963.
12. Dong Z, Wang F, Setsompop K. Motion-corrected 3D-EPTI with efficient 4D navigator acquisition for fast and robust whole-brain quantitative imaging. Magn Reson Med. 2022 Sep;88(3):1112-1125.
13. Wang G, Gong E, Banerjee S, Martin D, Tong E, Choi J, Chen H, Wintermark M, Pauly JM, Zaharchuk G. Synthesize high-quality multi-contrast magnetic resonance imaging from multi-echo acquisition using multi-task deep generative model. IEEE transactions on medical imaging. 2020 Apr 10;39(10):3089-99.
14. Wang K, Doneva M, Meineke J, Amthor T, Karasan E, Tan F, Tamir JI, Yu SX, Lustig M. High-fidelity Direct Contrast Synthesis from Magnetic Resonance Fingerprinting. arXiv preprint arXiv:2212.10817. 2022 Dec 21.