Keywords: Physics & Engineering: Low-field MRI, Image acquisition: Machine learning, Image acquisition: Sequences
The ongoing development of ultra-low-field (ULF) (<0.1T) and low-field (LF) (0.1-0.5T) MRI technologies will enable patient-centric and site-agnostic MRI scanners to fulfill the unmet clinical needs across various healthcare corners. This presentation aims to outline several approaches to mitigate the MR signal reduction problem intrinsic to ULF (and LF) MRI.1. O'Reilly T, Teeuwisse WM, Webb AG. Three-dimensional MRI in a homogenous 27cm diameter bore Halbach array magnet. J Magn Reson 2019;307:106578.
2. Sarracanie M, Salameh N. Low-Field MRI: How Low Can We Go? A Fresh View on an Old Debate. Front Phys-Lausanne 2020;8.
3. He Y, He W, Tan L, Chen F, Meng F, Feng H, Xu Z et al. Use of 2.1 MHz MRI scanner for brain imaging and its preliminary results in stroke. J Magn Reson 2020;319:106829.
4. Sheth KN, Mazurek MH, Yuen MM, Cahn BA, Shah JT, Ward A et al. Assessment of Brain Injury Using Portable, Low-Field Magnetic Resonance Imaging at the Bedside of Critically Ill Patients. JAMA Neurol 2020;78(1):41-47.
5. Cooley CZ, McDaniel PC, Stockmann JP, Srinivas SA, Cauley SF, Sliwiak M, Wald L et al. A portable scanner for magnetic resonance imaging of the brain. Nat Biomed Eng 2021;5(3):229-239.
6. Liu Y, Leong ATL, Zhao Y, Xiao L, Mak HKF, Tsang ACO, Wu EX et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun 2021;12(1):7238.
7. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 1984;11(4):425-448.
8. Resmer F, Seton HC, Hutchison JM. Cryogenic receive coil and low noise preamplifier for MRI at 0.01T. J Magn Reson 2010;203(1):57-65.
9. Coffey AM, Truong ML, Chekmenev EY. Low-field MRI can be more sensitive than high-field MRI. J Magn Reson 2013;237:169-174.
10. Srinivas SA, Cauley SF, Stockmann JP, Sappo CR, Vaughn CE, Wald LL et al. External Dynamic InTerference Estimation and Removal (EDITER) for low field MRI. Magn Reson Med 2022;87(2):614-628.
11. Zhao, Y., Xiao, L., Lau, V., Liu, Y., Leong, A. T., & Wu, E. X. (2022). Robust Electromagnetic Interference (EMI) Elimination via Simultaneous Sensing and Deep Learning Prediction for RF Shielding-free MRI (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2210.06730
12. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555(7697):487-492.
13. Knoll F, Murrell T, Sriram A, Yakubova N, Zbontar J, Rabbat M et al. Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn Reson Med 2020;84(6):3054-3070.
14. Xiao L, Liu Y, Yi Z, Zhao Y, Xie L, Cao P, Wu EX et al. Partial Fourier reconstruction of complex MR images using complex-valued convolutional neural networks. Magn Reson Med 2022;87(2):999-1014.
15. Iglesias JE, Schleicher R, Laguna S, Billot B, Schaefer P, McKaig B et al. Quantitative Brain Morphometry of Portable Low-Field-Strength MRI Using Super-Resolution Machine Learning. Radiology 2022;0(0):220522.
16. Lau V, Xiao L, Zhao Y, Su S, Ding Y, Man C, Wang X, Tsang A, Lau GKK, Leung GKK, Leong ATL, Wu EX. Pushing the limits of low-cost ultra-low-field MRI by dual-acquisition deep learning 3D super-resolution. Magn Reson Med 2023;In Press. DOI: 10.1002/mrm.29642