Keywords: Neuro: White matter, Contrast mechanisms: Microstructure, Contrast mechanisms: CEST & MT
This course provides an outline of the potential of magnetization transfer techniques for myelin imaging. In particular, this presentation will show how inhomogeneous magnetization transfer (ihMT) can overcome limitations of the basic MT contrasts (MTR, MPF) to provide more specific information related to myelin. The potential and scientific/technical challenges of these approaches for clinical applications are discussed.1. Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxationin vivo. Magnetic Resonance in Medicine. 1989;10(1):135-144. doi:10.1002/mrm.1910100113
2. EDZES HT, SAMULSKI ET. Cross relaxation and spin diffusion in the proton NMR of hydrated collagen. Nature. 1977;265(5594):521-523. doi:10.1038/265521a0
3. Sled JG, Pike GB. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magnetic resonance in medicine. 2001;46(5):923-931.
4. Dousset V, Grossman RI, Ramer KN, et al. Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology. 1992;182(2):483-491. doi:10.1148/radiology.182.2.1732968
5. Deloire-Grassin MS, Brochet B, Quesson B, et al. In vivo evaluation of remyelination in rat brain by magnetization transfer imaging. J Neurol Sci. 2000;178(1):10-16.
6. Gass A, Barker GJ, Kidd D, et al. Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol. 1994;36(1):62-67. doi:10.1002/ana.410360113
7. Filippi M, Campi A, Dousset V, et al. A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology. 1995;45(3 Pt 1):478-482.
8. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Annals of Neurology. 2004;56(3):407-415. doi:10.1002/ana.20202
9. van Waesberghe JH, Barkhof F. Magnetization transfer imaging of the spinal cord and the optic nerve in patients with multiple sclerosis. Neurology. 1999;53(5 Suppl 3):S46-48.
10. Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS. Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magnetic Resonance in Medicine. 2003;50(1):83-91. doi:10.1002/mrm.10514
11. Davies GR, Tozer DJ, Cercignani M, et al. Estimation of the macromolecular proton fraction and bound pool T2; in multiple sclerosis. Multiple Sclerosis. 2004;10(6):607-613. doi:10.1191/1352458504ms1105oa
12. Yarnykh VL, Bowen JD, Samsonov A, et al. Fast Whole-Brain Three-dimensional Macromolecular Proton Fraction Mapping in Multiple Sclerosis. Radiology. 2015;274(1):210-220. doi:10.1148/radiol.14140528
13. Vavasour IM, Laule C, Li DKB, Traboulsee AL, MacKay AL. Is the magnetization transfer ratio a marker for myelin in multiple sclerosis? J Magn Reson Imaging. 2011;33(3):713-718. doi:10.1002/jmri.22441
14. Newcombe J, Hawkins CP, Henderson CL, et al. Histopathology of multiple sclerosis lesions detected by magnetic resonance imaging in unfixed postmortem central nervous system tissue. Brain. 1991;114 ( Pt 2):1013-1023.
15. Goldman M. Spin Temperature and Nuclear Magnetic Resonance in Solids. Oxford University Press.; 1970.
16. Provotorov B. Magnetic resonance saturation in crystals. Zh Exsp Teor Fiz. 1962;14:1126-1131.
17. Lee JS, Khitrin AK, Regatte RR, Jerschow A. Uniform saturation of a strongly coupled spin system by two-frequency irradiation. The Journal of chemical physics. 2011;134(23):234504.
18. Varma G, Duhamel G, de Bazelaire C, Alsop DC. Magnetization transfer from inhomogeneously broadened lines: A potential marker for myelin: Magnetization Transfer from Inhomogeneously Broadened Lines. Magnetic Resonance in Medicine. 2015;73(2):614-622. doi:10.1002/mrm.25174
19. Varma G, Girard OM, Prevost VH, Grant A, Duhamel GD, Alsop DC. Interpretation of magnetization transfer from inhomogeneously broadened lines (ihMT) in tissues as a dipolar order effect within motion restricted molecules. Journal of Magnetic Resonance. 2015;260:67-76. doi:10.1016/j.jmr.2015.08.024
20. Varma G, Girard OM, Prevost VH, Grant AK, Duhamel G, Alsop DC. In vivo measurement of a new source of contrast, the dipolar relaxation time, T1D , using a modified inhomogeneous magnetization transfer (ihMT) sequence. Magn Reson Med. 2017;78(4):1362-1372. doi:10.1002/mrm.26523
21. Hertanu A, Soustelle L, Le Troter A, et al. T 1D ‐weighted ihMT imaging – Part I. Isolation of long‐ and short‐T 1D components by T 1D ‐filtering. Magnetic Resonance in Med. 2022;87(5):2313-2328. doi:10.1002/mrm.29139
22. Duhamel G, Prevost VH, Cayre M, et al. Validating the sensitivity of inhomogeneous magnetization transfer (ihMT) MRI to myelin with fluorescence microscopy. NeuroImage. 2019;199:289-303. doi:10.1016/j.neuroimage.2019.05.061
23. Hertanu A, Soustelle L, Buron J, et al. T 1D ‐weighted ihMT imaging – Part II. Investigating the long‐ and short‐T 1D components correlation with myelin content. Comparison with R 1 and the macromolecular proton fraction. Magnetic Resonance in Med. 2022;87(5):2329-2346. doi:10.1002/mrm.29140
24. Alsop DC, Ercan E, Girard OM, et al. Inhomogeneous magnetization transfer imaging: Concepts and directions for further development. NMR in Biomedicine. August 2022. doi:10.1002/nbm.4808
25. Hertanu A, Soustelle L, Buron J, et al. Inhomogeneous Magnetization Transfer (ihMT) imaging in the acute cuprizone mouse model of demyelination/remyelination. NeuroImage. 2023;265:119785. doi:10.1016/j.neuroimage.2022.119785
26. Lee CH, Walczak P, Zhang J. Inhomogeneous magnetization transfer MRI of white matter structures in the hypomyelinated shiverer mouse brain. Magnetic Resonance in Med. 2022;88(1):332-340. doi:10.1002/mrm.29207
27. Van Obberghen E, Mchinda S, le Troter A, et al. Evaluation of the Sensitivity of Inhomogeneous Magnetization Transfer (ihMT) MRI for Multiple Sclerosis. AJNR Am J Neuroradiol. 2018;39(4):634-641. doi:10.3174/ajnr.A5563
28. Rasoanandrianina H, Demortière S, Trabelsi A, et al. Sensitivity of the Inhomogeneous Magnetization Transfer Imaging Technique to Spinal Cord Damage in Multiple Sclerosis. American Journal of Neuroradiology. 2020;41(5):929-937. doi:10.3174/ajnr.A6554
29. Zhang L, Wen B, Chen T, et al. A comparison study of inhomogeneous magnetization transfer (ihMT) and magnetization transfer (MT) in multiple sclerosis based on whole brain acquisition at 3.0 T. Magnetic Resonance Imaging. 2020;70:43-49. doi:10.1016/j.mri.2020.03.010
30. Geeraert BL, Lebel RM, Mah AC, et al. A comparison of inhomogeneous magnetization transfer, myelin volume fraction, and diffusion tensor imaging measures in healthy children. Neuroimage. September 2017. doi:10.1016/j.neuroimage.2017.09.019
31. Taso M, Girard OM, Duhamel G, et al. Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT): Spinal Cord Microstructure Assessment Using DTI and ihMT. NMR in Biomedicine. 2016. doi:10.1002/nbm.3530
Fig.4: ihMT imaging. (a) Correlation of ihMT images obtained with different values of τswitch and MPF with myelin density obtained by Green Fluorescence microscopy and Luxol fast blue optical density. Specificity of ihMT T1D-filters and MPF for myelin. (b) Correlation of ihMT with other myelin-sensitive MRI techniques. (c) Application of ihMT on MS patients.