Diffusion imaging has progressed beyond standard DTI to mutli-shell and non-Gaussian techniques to improve upon the sensitivity of detecting multiple fiber angles in a voxel. Newer high-gradient scanners are able to further expand the capabilities of these advanced DTI sequences to help us improve upon the detection of complex fiber tracks in voxels, which is important in the evaluation and treatment of traumatic brain injury. These new technologies hold promise to improve our understanding of the movement of microcellular fluids.
Grant funding from NIH U01EB028976, NIH U01EB024450, CDMRP W81XWH-16-2-0054.
MAGNUS is not FDA approved, so all use of the MAGNUS MRI is considered research only. MAGNUS is an investigational product of GE Research Center.
Abstract Disclaimer
The opinions or assertions contained herein are the views of the authors and are not to be construed as the views of the U.S. Department of Defense, Walter Reed National Military Medical Center, or the Uniformed Services University.
Conflict of Interest Statement
Author G.K. is an employee of the Geneva Foundation. Author T.K.F. is an employee of General Electric Research
1. Tenovuo O, Diaz-Arrastia R, Goldstein LE, Sharp DJ, van der Naalt J, Zasler ND. Assessing the Severity of Traumatic Brain Injury-Time for a Change? J Clin Med. 2021 Jan 4;10(1):148. doi: 10.3390/jcm10010148. PMID: 33406786; PMCID: PMC7795933.
2. Huang SY, Witzel T, Keil B, Scholz A, Davids M, Dietz P, Rummert E, Ramb R, Kirsch JE, Yendiki A, Fan Q, Tian Q, Ramos-Llordén G, Lee HH, Nummenmaa A, Bilgic B, Setsompop K, Wang F, Avram AV, Komlosh M, Benjamini D, Magdoom KN, Pathak S, Schneider W, Novikov DS, Fieremans E, Tounekti S, Mekkaoui C, Augustinack J, Berger D, Shapson-Coe A, Lichtman J, Basser PJ, Wald LL, Rosen BR. Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. Neuroimage. 2021 Nov;243:118530. doi: 10.1016/j.neuroimage.2021.118530. Epub 2021 Aug 28. PMID: 34464739; PMCID: PMC8863543.
3. Camerucci E, Campeau NG, Trzasko JD, Gray EM, Bernstein MA, Cogswell PM, Shu Y, Foo TK, Huston J 3rd. Improved Brain MR Imaging from a Compact, Lightweight 3T Scanner with High-Performance Gradients. J Magn Reson Imaging. 2022 Jan;55(1):166-175. doi: 10.1002/jmri.27812. Epub 2021 Jun 28. PMID: 34184362; PMCID: PMC8806246.
4. Foo TKF, Tan ET, Vermilyea ME, Hua Y, Fiveland EW, Piel JE, Park K, Ricci J, Thompson PS, Graziani D, Conte G, Kagan A, Bai Y, Vasil C, Tarasek M, Yeo DTB, Snell F, Lee D, Dean A, DeMarco JK, Shih RY, Hood MN, Chae H, Ho VB. Highly efficient head-only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0T (MAGNUS) for brain microstructure imaging. Magn Reson Med. 2020 Jun;83(6):2356-2369. doi: 10.1002/mrm.28087. Epub 2019 Nov 25. PMID: 31763726.
5. Bhushan C, Abad N, Madhavan R, Marinelli L, Morris HD, Hood MN, DeMarco JK, Shih RY, Zhu A, Kohls G, Fiveland E, Kenney K, Ho VB, Foo TKF. Subject-specific Analysis for Diffusion and Kurtosis Changes in mild Traumatic Brain Injury (mTBI) Patients. Proceedings of the ISMRM-ESMRMB Joint Annual Meeting, 2022, London, England, May 6-12, 2022.
6. Pasquini J, Firbank MJ, Ceravolo R, Silani V, Pavese N. Diffusion Magnetic Resonance Imaging Microstructural Abnormalities in Multiple System Atrophy: A Comprehensive Review. Mov Disord. 2022 Oct;37(10):1963-1984. doi: 10.1002/mds.29195. Epub 2022 Aug 29. PMID: 36036378.
7. Steven AJ, Zhuo J, Melhem ER. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol. 2014 Jan;202(1):W26-33. doi: 10.2214/AJR.13.11365. PMID: 24370162.
8. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005 Jun;53(6):1432-40. doi: 10.1002/mrm.20508. PMID: 15906300.
9. Palacios EM, Owen JP, Yuh EL, Wang MB, Vassar MJ, Ferguson AR, Diaz-Arrastia R, Giacino JT, Okonkwo DO, Robertson CS, Stein MB, Temkin N, Jain S, McCrea M, MacDonald CL, Levin HS, Manley GT, Mukherjee P; TRACK-TBI Investigators. The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study. Sci Adv. 2020 Aug 7;6(32):eaaz6892. doi: 10.1126/sciadv.aaz6892. PMID: 32821816; PMCID: PMC7413733.
10. Shetty T, Nguyen JT, Cogsil T, Tsiouris AJ, Niogi SN, Kim EU, Dalal A, Halvorsen K, Cummings K, Zhang T, Masdeu JC, Mukherjee P, Marinelli L. Clinical Findings in a Multicenter MRI Study of Mild TBI. Front Neurol. 2018 Oct 23;9:836. doi: 10.3389/fneur.2018.00836. PMID: 30405511; PMCID: PMC6206843.
11. Morris HD, Abad N, Madhaven R Bhushan C, Zhu A, Marinelli L, Fiveland E, DeMarco JK, Shih R, Hood M, Kohls G, Kenney K, Foo T, Ho V. Diffusion Imaging comparison of high-performance Gradient system (MAGNUS) with clinical MR system. Proceedings of the ISMRM-ESMRMB Joint Annual Meeting, 2022, London, England, May 6-12, 2022.
Figure 1. Comparison of FA maps for conventional 3T and MAGNUS 3T diffusion scans. With stronger gradient systems we can achieve higher SNR, thinner slices and resolution can be seen with MAGNUS 3T compared to conventional 3T. Both sequences have been optimized for their respective scanners for comparison. The top row shows FA maps from a whole-body 3T scanner using the multi-shell (3 tensor values) with maximum b value 2800 and slice thickness 2.2 mm (10). The bottom row shows FA maps from the MAGNUS 3T using a multi-shell (3 tensor) DTI with a maximum b value 4000 and slice thickness 1.5mm.