Keywords: Neuroinflammation, Preclinical
Stroke is routinely diagnosed using clinical MRI and MRS, which provide information on tissue pathophysiology and metabolism respectively. However, within such a complex lesion, it is difficult to establish the relative contributions of the ischaemic and inflammatory components on the resulting pathophysiology. It would be useful for clinicians to be able to identify tissue MR signals attributable to cerebral inflammation and discern them from MR signals pertaining to ischaemic injury, facilitating targeted therapeutic strategies.
1Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev
Neurosci. 2014;15(2):84–97.
2A.M. Blamire, D.C. Anthony, B. Rajagopalan, N.R. Sibson, V.H. Perry, P. Styles,
Interleukin-1beta-induced changes in blood–brain barrier permeability, apparent
diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic
resonance study, J. Neurosci. 20 (2000) 8153–8159.
3T. Back, M. Hoehn-Berlage, K. Kohno, K.A. Hossmann, Diffusion nuclear magnetic
resonance imaging in experimental stroke. Correlation with cerebral
metabolites, Stroke 25 (1994) 494–500.
4A.L. Busza, K.L. Allen, M.D. King, N. van Bruggen, S.R. Williams, D.G. Gadian,
Diffusion-weighted imaging studies of cerebral ischemia in gerbils. Potential
relevance to energy failure, Stroke 23 (1992) 1602–1612.
5H.A. Crockard, D.G. Gadian, R.S. Frackowiak, E. Proctor, K. Allen, S.R. Williams,
R.W. Russell, Acute cerebral ischaemia: concurrent changes in cerebral blood
flow, energy metabolites, pH, and lactate measured with hydrogen clearance
and 31P and 1H nuclear magnetic resonance spectroscopy. II. Changes during
ischaemia, J. Cereb. Blood Flow Metab. 7 (1987) 394–402.
6M.E. Moseley, Y. Cohen, J. Mintorovitch, L. Chileuitt, H. Shimizu, J. Kucharczyk,
M.F. Wendland, P.R. Weinstein, Early detection of regional cerebral ischemia in
cats: comparison of diffusion- and T2-weighted MRI and spectroscopy, Magn.
Reson. Med. 14 (1990) 330–346.
7H. Naritomi, M. Sasaki, M. Kanashiro, M. Kitani, T. Sawada, Flow thresholds for
cerebral energy disturbance and Na+ pump failure as studied by in vivo 31P and
23Na nuclear magnetic resonance spectroscopy, J. Cereb. Blood Flow Metab. 8
(1988) 16–23.
8A. van der Toorn, E. Sykova, R.M. Dijkhuizen, I. Vorisek, L. Vargova, E. Skobisova,
M. van Lookeren Campagne, T. Reese, K. Nicolay, Dynamic changes
in water ADC, energy metabolism, extracellular space volume, and tortuosity
in neonatal rat brain during global ischemia, Magn. Reson. Med. 36 (1996)
52–60.
9J. Astrup, Energy-requiring cell functions in the ischemic brain. Their critical
supply and possible inhibition in protective therapy, J. Neurosurg. 56 (1982)
482–497.
10B.A. Bell, L. Symon, N.M. Branston, CBF and time thresholds for the formation
of ischemic cerebral edema, and effect of reperfusion in baboons, J. Neurosurg.
62 (1985) 31–41.
11A.J. Hansen, C.E. Olsen, Brain extracellular space during spreading depression
and ischemia, Acta Physiol. Scand. 108 (1980) 355–365.
12K. Kohno, M. Hoehn-Berlage, G. Mies, T. Back, K.A. Hossmann, Relationship
between diffusion-weighted MR images, cerebral blood flow, and energy state
in experimental brain infarction, Magn. Reson. Imaging 13 (1995) 73–80.
13H.B. Verheul, R. Balazs, J.W. Berkelbach van der Sprenkel, C.A. Tulleken, K.
Nicolay, K.S. Tamminga, M. van Lookeren Campagne, Comparison of diffusion weighted MRI with changes in cell volume in a rat model of brain injury, NMR
Biomed. 7 (1994) 96–100.
14D.C. Anthony, S.J. Bolton, S. Fearn, V.H. Perry, Age-related effects of interleukin-
1 beta on polymorphonuclear neutrophil-dependent increases in blood–brain
barrier permeability in rats, Brain 120 (Pt 3) (1997) 435–444.
15Saggu R, Morrison B 3rd, Lowe JP and Pringle AK. Interleukin-1beta does not affect the energy metabolism of rat organotypic hippocampal-slice cultures. Neurosci Lett. 2012 Feb 6; 508(2): 114-8.
16L. Stoppini, P.A. Buchs, D. Muller, A simple method for organotypic cultures of
nervous tissue, J. Neurosci. Methods 37 (1991) 173–182.
17Saggu R. Interleukin-1beta-induced reduction of tissue water diffusion in the juvenile rat brain on ADC MRI is not associated with 31P MRS-detectable energy failure. J Inflamm (Lond). 2016 Mar 17; 13:9.
18Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153–e639.
19Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer's disease in the United States (2010-2050) estimated using the 2010 Census. Neurology.
20Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, et al. A novel potent vasoconstrictor peptide produced by vascularendothelial cells. Nature. 1988;332:411–5.
21D. Anthony, R. Dempster, S. Fearn, J. Clements, G. Wells, V.H. Perry, K. Walker, CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood–brain barrier breakdown, Curr. Biol. 8 (1998) 923–926
22Agnati LF, Zoli M, Kurosawa M, Benfenati F, Biagini G, et al. A new model of focal brain ischemia based on the intracerebral injection of endothelin-1. Ital J Neurol Sci.1991;12:49–53.
23Frost SB, Barbay S, Mumert ML, Stowe AM, Nudo RJ. An animal model of capsular infarct: endothelin-1 injections in the rat. BehavBrain Res. 2006;169:206–11.
24Fuxe K, Kurosawa N, Cintra A, Hallstrom A, Goiny M, et al. Involvement of local ischemia in endothelin-1 induced lesions of the neostriatum of the anaesthetized rat. Exp Brain Res.1992;88:131–9.
25Hughes PM, Anthony DC, Ruddin M, Botham MS, Rankine EL, et al. Focal lesions in the rat central nervous system induced by endothelin-1. J Neuropathol Exp Neurol. 2003;62:1276–86.
26Moyanova SG, Kortenska LV, Mitreva RG, Pashova VD, Ngomba RT, Nicoletti F. Multimodal assessment of neuroprotection applied to the use of MK-801 in the endothelin-1 model of transient focal brain ischemia. Brain Res. 2007;1153:58–67.
27Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4:399–415.
28Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis. 2004;19:151–67.
29Mitsios N, Gaffney J, Kumar P, Krupinski J, Kumar S, Slevin M. Pathophysiology of acute ischaemic stroke: an analysis of common signalling mechanisms and identification of new molecular targets. Pathobiology. 2006;73:159–75.
Fig. 1 Time course of MRI changes following intrastriatal microinjection of 100 ng/μl IL-1β.
Comparison of anatomical imaging changes following combined intrastriatal microinjection of ET-1 (160 pmol) and IL-1β (1 ng/μl). Representative T2-w and T1-w images, ADC maps and their respective thresholded images (2 SD below the mean ADC value of contralateral hemisphere of cohort imaged at 2.5 h, 6 h, 24 h and 72 h). Data shown are taken from the same animal at each point during the entire course of the study.