Keywords: Elastography, Brain, Cortical stiffness
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that affects both white matter and cortical areas. While magnetic resonance imaging (MRI) can image pathological changes in the white matter, it is limited in quantifying cortical tissue damage in MS. Therefore, cerebral 3D-MR elastography based on multifrequency wave excitation and tomoelastography postprocessing was developed to measure cortical stiffness. We found that the cerebral cortex in MS patients is markedly softer than global brain matter and deep gray matter indicating the use of cerebral tomoelastography as a potential new imaging marker for monitoring MS disability.[1] Z. Yin, A.J. Romano, A. Manduca, R.L. Ehman, J. Huston, 3rd, Stiffness and Beyond: What MR Elastography Can Tell Us About Brain Structure and Function Under Physiologic and Pathologic Conditions, Top Magn Reson Imaging 27(5) (2018) 305-318.
[2] L.V. Hiscox, C.L. Johnson, E. Barnhill, M.D.J. McGarry, J. Huston, E.J.R. van Beek, J.M. Starr, N. Roberts, Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications, Physics in Medicine and Biology 61(24) (2016) R401-R437.
[3] M.C. Murphy, J. Huston, 3rd, R.L. Ehman, MR elastography of the brain and its application in neurological diseases, Neuroimage 187 (2019) 176-183.
[4] S. Hirsch, J. Braun, I. Sack, Magnetic Resonance Elastography: Physical Background And Medical Applications, Wiley-VCH2017.
[5] J. Wuerfel, F. Paul, B. Beierbach, U. Hamhaber, D. Klatt, S. Papazoglou, F. Zipp, P. Martus, J. Braun, I. Sack, MR-elastography reveals degradation of tissue integrity in multiple sclerosis, Neuroimage 49(3) (2010) 2520-5.
[6] K.J. Streitberger, I. Sack, D. Krefting, C. Pfuller, J. Braun, F. Paul, J. Wuerfel, Brain viscoelasticity alteration in chronic-progressive multiple sclerosis, PloS one 7(1) (2012) e29888.
[7] A. Fehlner, J.R. Behrens, K.J. Streitberger, S. Papazoglou, J. Braun, J. Bellmann-Strobl, K. Ruprecht, F. Paul, J. Wurfel, I. Sack, Higher-resolution MR elastography reveals early mechanical signatures of neuroinflammation in patients with clinically isolated syndrome, J Magn Reson Imaging 44(1) (2016) 51-8.
[8] K. Schregel, E. Wuerfel, P. Garteiser, I. Gemeinhardt, T. Prozorovski, O. Aktas, H. Merz, D. Petersen, J. Wuerfel, R. Sinkus, Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography, Proc Natl Acad Sci U S A 109(17) (2012) 6650-5.
[9] J. Wuerfel, E. Tysiak, T. Prozorovski, M. Smyth, S. Mueller, J. Schnorr, M. Taupitz, F. Zipp, Mouse model mimics multiple sclerosis in the clinico-radiological paradox, Eur J Neurosci 26(1) (2007) 190-8.
[10] J. Weickenmeier, R. de Rooij, S. Budday, P. Steinmann, T.C. Ovaert, E. Kuhl, Brain stiffness increases with myelin content, Acta Biomater 42 (2016) 265-272.
[11] S. Wang, J.M. Millward, L. Hanke-Vela, B. Malla, K. Pilch, A. Gil-Infante, S. Waiczies, S. Mueller, P. Boehm-Sturm, J. Guo, I. Sack, C. Infante-Duarte, MR Elastography-Based Assessment of Matrix Remodeling at Lesion Sites Associated With Clinical Severity in a Model of Multiple Sclerosis, Front Neurol 10 (2019) 1382.
[12] J.J.G. Geurts, F. Barkhof, Grey matter pathology in multiple sclerosis, Lancet Neurol. 7(9) (2008) 841-851.
[13] M. Calabrese, R. Magliozzi, O. Ciccarelli, J.J. Geurts, R. Reynolds, R. Martin, Exploring the origins of grey matter damage in multiple sclerosis, Nat Rev Neurosci 16(3) (2015) 147-58.
[14] K. Riek, J.M. Millward, I. Hamann, S. Mueller, C.F. Pfueller, F. Paul, J. Braun, C. Infante-Duarte, I. Sack, Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis, Neuroimage Clin 1(1) (2012) 81-90.
[15] H. Herthum, S. Hetzer, M. Scheel, M. Shahryari, J. Braun, F. Paul, I. Sack, In vivo stiffness of multiple sclerosis lesions is similar to that of normal-appearing white matter, Acta Biomater 138 (2022) 410-421.
[16] F. Schrank, C. Warmuth, H. Tzschätzsch, B. Kreft, S. Hirsch, J. Braun, T. Elgeti, I. Sack, Cardiac-gated steady-state multifrequency magnetic resonance elastography of the brain: Effect of cerebral arterial pulsation on brain viscoelasticity, Journal of Cerebral Blood Flow and Metabolism 40(5) (2020) 991-1001.
[17] A. Fehlner, S. Hirsch, M. Weygandt, T. Christophel, E. Barnhill, M. Kadobianskyi, J. Braun, J. Bernarding, R. Lutzkendorf, I. Sack, S. Hetzer, Increasing the spatial resolution and sensitivity of magnetic resonance elastography by correcting for subject motion and susceptibility-induced image distortions, J Magn Reson Imaging 46(1) (2017) 134-141.
[18] H. Tzschatzsch, J. Guo, F. Dittmann, S. Hirsch, E. Barnhill, K. Johrens, J. Braun, I. Sack, Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves, Med Image Anal 30 (2016) 1-10.
[19] H. Herthum, S.C.H. Dempsey, A. Samani, F. Schrank, M. Shahryari, C. Warmuth, H. Tzschätzsch, J. Braun, I. Sack, Superviscous properties of the in vivo brain at large scales, Acta Biomater 121 (2021) 393-404.
[20] H. Herthum, S. Hetzer, M. Scheel, M. Shahryari, J. Braun, F. Paul, I. Sack, In vivo stiffness of multiple sclerosis lesions is similar to that of normal-appearing white matter, Acta Biomaterialia (2021).
[21] H. Herthum, S. Hetzer, B. Kreft, H. Tzschätzsch, M. Shahryari, T. Meyer, S. Görner, H. Neubauer, J. Guo, J. Braun, Cerebral tomoelastography based on multifrequency MR elastography in two and three dimensions, (2022) http://dx.doi.org/10.17169/refubium-35668.
[22] E. Barnhill, M. Nikolova, C. Ariyurek, F. Dittmann, J. Braun, I. Sack, Fast Robust Dejitter and Interslice Discontinuity Removal in MRI Phase Acquisitions: Application to Magnetic Resonance Elastography, IEEE Trans Med Imaging 38(7) (2019) 1578-1587.
[23] W.D. Penny, K.J. Friston, J.T. Ashburner, S.J. Kiebel, T.E. Nichols, Statistical parametric mapping: the analysis of functional brain images, Elsevier2011.