Keywords: Psychiatric Disorders, fMRI (resting state), Functional Connectivity, Tourette Syndrome
Gilles de la Tourette syndrome (GTS) is characterized by the expression of tics and frequently co-occurs with comorbidities including obsessive compulsive disorder (OCD), depression, and attention deficit/hyperactivity disorder (ADHD). For a better discrimination of GTS’ manifestation in brain networks, we analyzed resting-state fMRI data from patients with “GTS only” (no comorbidities) and “GTS plus” (with comorbidities) based on clinical ratings. Our findings suggest that increased intrinsic connectivity of insular cortex with putamen are causally related to GTS while decreased connectivity of the frontal pole, medial temporal and superior frontal gyrus is likely to be related to comorbidities.1. Jackson, G. M., Draper, A., Dyke, K., Pépés, S. E., & Jackson, S. R. (2015). Inhibition, disinhibition, and the control of action in Tourette syndrome. Trends Cogn. Sci. 19(11), 655-665.
2.Nieto-Castanon, A. (2020). Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press.
3. Martuzzi, R., Ramani, R., Qiu, M., Shen, X., Papademetris, X., & Constable, R. T. (2011). A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. NeuroImage 58(4), 1044-1050.
4. Craig, A. D. (2011). Significance of the insula for the evolution of human awareness of feelings from the body. Ann. N. Y. Acad. Sci. 1225(1), 72-82.
5. Mălîia, M. D., Donos, C., Barborica, A., Popa, I., Ciurea, J., Cinatti, S., & Mîndruţă, I. (2018). Functional mapping and effective connectivity of the human operculum. Cortex 109, 303-321.
6. Bohlhalter, S., Goldfine, A., Matteson, S. et al. (2006). Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain 129(8), 2029-2037.
7. Neuner, I., Werner, C. J., Arrubla, J. et al. (2014). Imaging the where and when of tic generation and resting state networks in adult Tourette patients. Front. Hum. Neurosci. 8, 362.
8. Tinaz, S., Malone, P., Hallett, M., & Horovitz, S. G. (2015). Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Movement Dis. 30(9), 1190-1197.
9. Rae, C. L., Critchley, H. D., & Seth, A. K. (2019). A Bayesian account of the sensory-motor interactions underlying symptoms of Tourette syndrome. Front. Psychiatry 10, 29.
10. Ganos, C., Al-Fatly, B., Fischer, J. F. et al. (2022). A neural network for tics: insights from causal brain lesions and deep brain stimulation. Brain. doi: 10.1093/brain/awac009.
11. Goldberg, I. I., Harel, M., & Malach, R. (2006). When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50(2), 329-339.
12. Zhu, Y., Zhang, L., Fan, J., & Han, S. (2007). Neural basis of cultural influence on self-representation. NeuroImage 34(3), 1310-1316.
13. Chiao, J. Y., Harada, T., Komeda, H. et al. (2009). Neural basis of individualistic and collectivistic views of self. Hum. Brain Mapp. 30(9), 2813-2820.
14. Ganos, C., Kahl, U., Schunke, O. et al. (2012). Are premonitory urges a prerequisite of tic inhibition in Gilles de la Tourette syndrome? J. Neurol. Neurosurg. Psychiatry 83(10), 975-978.
15. Delorme, C., Salvador, A., Voon, V., Roze, E., Vidailhet, M., Hartmann, A., & Worbe, Y. (2016). Illusion of agency in patients with Gilles de la Tourette Syndrome. Cortex 77, 132-140.
16. Langelage, J., Verrel, J., Friedrich, J. et al. (2022). Urge-tic associations in children and adolescents with Tourette syndrome. Sci. Rep. 12(1), 1-11.
17. Nakamura, K., Kawashima, R., Sugiura, M. et al. (2001). Neural substrates for recognition of familiar voices: A PET study. Neuropsychologia 39(10), 1047-1054.
18. Fu, C., Zhang, H., Xuan, A., Gao, Y., Xu, J., & Shi, D. (2018). A combined study of 18F‑FDG PET‑CT and fMRI for assessing resting cerebral function in patients with major depressive disorder. Exp. Ther. Med. 16(3), 1873-1881.
19. Karim, H. T., Andreescu, C., Tudorascu, D. et al. (2017). Intrinsic functional connectivity in late-life depression: trajectories over the course of pharmacotherapy in remitters and non-remitters. Mol. Psychiatry 22(3), 450-457.
20. Vasic, N., Walter, H., Sambataro, F., & Wolf, R. C. (2009). Aberrant functional connectivity of dorsolateral prefrontal and cingulate networks in patients with major depression during working memory processing. Psychol. Med. 39(6), 977-987.
21. Veer, I. M., Beckmann, C. F., Van Tol, M. J. et al. (2010). Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front. Systems Neurosci. 4, 41.
22. Schlösser, R. G., Wagner, G., Schachtzabel, C., Peikert, G., Koch, K., Reichenbach, J. R., & Sauer, H. (2010). Fronto‐cingulate effective connectivity in obsessive compulsive disorder: A study with fMRI and dynamic causal modeling. Hum. Brain Mapp. 31(12), 1834-1850.
23. Bu, X., Hu, X., Zhang, L. et al. (2019). Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder. Translational Psychiatry 9(1), 1-10.
24. Sokunbi, M. O., Fung, W., Sawlani, V., Choppin, S., Linden, D. E., & Thome, J. (2013). Resting state fMRI entropy probes complexity of brain activity in adults with ADHD. Psychiatry Res. Neuroimaging 214(3), 341-348.
25. Qian, A., Wang, X., Liu, H. et al. (2018). Dopamine D4 receptor gene associated with the frontal-striatal-cerebellar loop in children with ADHD: A resting-state fMRI study. Neurosci. Bull. 34(3), 497-506.
26. Townsend, J. D., Eberhart, N. K., Bookheimer, S. Y. et al. (2010). fMRI activation in the amygdala and the orbitofrontal cortex in unmedicated subjects with major depressive disorder. Psychiatry Res. Neuroimaging 183(3), 209-217.
27. Peng, D. H., Jiang, K. D., Fang, Y. R. et al. (2011). Decreased regional homogeneity in major depression as revealed by resting-state functional magnetic resonance imaging. Chin. Med. J. 124(03), 369-373.
28. Li, J., Xu, C., Cao, X. et al. (2013). Abnormal activation of the occipital lobes during emotion picture processing in major depressive disorder patients. Neural Regen. Res. 8(18), 1693.
29. Zhong, X., Pu, W., & Yao, S. (2016). Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: a meta-analysis of resting-state fMRI data. J. Affect. Disord. 206, 280-286.
30. Robertson, M. M. (2006). Mood disorders and Gilles de la Tourette's syndrome: an update on prevalence, etiology, comorbidity, clinical associations, and implications. J. Psychosom. Res. 61(3), 349-358.