Keywords: Molecular Imaging, Multimodal
We developed a novel nanoplatform-based MMP9-responsive T2–T1 switching MRI contrast agent, which can be used not only for non-invasive visualization and quantitative analysis of MMP9 activity, but also as a carrier in photothermal sensitization chemotherapy. The nanoplatform acts as a T2 contrast agent in physiological conditions ,then transform into a T1 contrast agent by MMP9 stimulus. We have demonstrated that the changes R1 and R2/R1 values are MMP9 concentration dependent in tumors. The combination of PMPSD with laser irradiation was more effective than single chemo-/photothermal therapy, and up-regulation of MMP9 in the tumor could eanhance the nanoplatform’s therapeutic effect.[1] Zhou Z, Bai R, Munasinghe J, Shen Z, Nie L, Chen X. T1–T2 Dual-Modal Magnetic Resonance Imaging: From Molecular Basis to Contrast Agents [J]. ACS Nano, 2017, 11(6): 5227-32.
[2] Lu H, Xu Y, Qiao R, Lu Z, Wang P, Zhang X, Chen A, Zou L, Wang Z. A novel clustered SPIO nanoplatform with enhanced magnetic resonance T2 relaxation rate for micro-tumor detection and photothermal synergistic therapy [J]. Nano Research, 2020, 13(8): 2216-25.
[3] Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents [J]. Theranostics, 2018, 8(9): 2521-48.
[4] Wang S, Zhou Z, Wang Z, Liu Y, Jacobson O, Shen Z, Fu X, Chen Z Y, Chen X. Gadolinium Metallofullerene-Based Activatable Contrast Agent for Tumor Signal Amplification and Monitoring of Drug Release [J]. Small, 2019, 15(16): e1900691.
[5] Cao Y, Mao Z, He Y, Kuang Y, Liu M, Zhou Y, Zhang Y, Pei R. Extremely Small Iron Oxide Nanoparticle-Encapsulated Nanogels as a Glutathione-Responsive T1 Contrast Agent for Tumor-Targeted Magnetic Resonance Imaging [J]. ACS applied materials & interfaces, 2020, 12(24): 26973-81.
[6] Lee N, Yoo D, Ling D, Cho M H, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy [J]. Chemical reviews, 2015, 115(19): 10637-89.
[7] Yi Z, Luo Z, Barth N D, Meng X, Liu H, Bu W, All A, Vendrell M, Liu X. In Vivo Tumor Visualization through MRI Off-On Switching of NaGdF4 -CaCO3 Nanoconjugates [J]. Advanced materials, 2019, 31(37): e1901851.
[8] Li J, Wang S, Wu C, Dai Y, Hou P, Han C, Xu K. Activatable molecular MRI nanoprobe for tumor cell imaging based on gadolinium oxide and iron oxide nanoparticle [J]. Biosensors and Bioelectronics, 2016, 86: 1047-53.
[9] Bai C, Jia Z, Song L, Zhang W, Chen Y, Zang F, Ma M, Gu N, Zhang Y. Time-Dependent T1-T2 Switchable Magnetic Resonance Imaging Realized by c(RGDyK) Modified Ultrasmall Fe3O4 Nanoprobes [J]. Adv Funct Mater, 2018, 28(32): 1802281.
[10] Lin J, Xin P, An L, Xu Y, Tao C, Tian Q, Zhou Z, Hu B, Yang S. Fe3O4–ZIF-8 assemblies as pH and glutathione responsive T2–T1 switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo [J]. Chemical Communications, 2019, 55(4): 478-81.
[11] Cai Z, Wu C, Yang L, Wang D, Ai H. Assembly-Controlled Magnetic Nanoparticle Clusters as MRI Contrast Agents [J]. ACS Biomaterials Science & Engineering, 2020, 6(5): 2533-42.
[12] Wang Z, Xue X, Lu H, He Y, Lu Z, Chen Z, Yuan Y, Tang N, Dreyer C A, Quigley L, Curro N, Lam K S, Walton J H, Lin T Y, Louie A Y, Gilbert D A, Liu K, Ferrara K W, Li Y. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging [J]. Nature nanotechnology, 2020, 15(6): 482-90.
[13] Edward M, Quinn J A, Mukherjee S, Jensen M B, Jardine A G, Mark P B, Burden A D. Gadodiamide contrast agent 'activates' fibroblasts: a possible cause of nephrogenic systemic fibrosis [J]. The Journal of pathology, 2008, 214(5): 584-93.
[14] Kim B H, Lee N, Kim H, An K, Park Y I, Choi Y, Shin K, Lee Y, Kwon S G, Na H B, Park J G, Ahn T Y, Kim Y W, Moon W K, Choi S H, Hyeon T. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents [J]. J Am Chem Soc, 2011, 133(32): 12624-31.
[15] Vallabani N V S, Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics [J]. 3 Biotech, 2018, 8(6): 279.
[16] Wang Z, Qiao R, Tang N, Lu Z, Wang H, Zhang Z, Xue X, Huang Z, Zhang S, Zhang G, Li Y. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer [J]. Biomaterials, 2017, 127: 25-35.
[17] Kim M H, Son H Y, Kim G Y, Park K, Huh Y M, Haam S. Redoxable heteronanocrystals functioning magnetic relaxation switch for activatable T1 and T2 dual-mode magnetic resonance imaging [J]. Biomaterials, 2016, 101: 121-30.
[18] Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y. Recent progress in drug delivery [J]. Acta pharmaceutica Sinica B, 2019, 9(6): 1145-62.
[19] Kaittanis C, Shaffer T M, Ogirala A, Santra S, Perez J M, Chiosis G, Li Y, Josephson L, Grimm J. Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching [J]. Nature communications, 2014, 5: 3384.
[20] Zhang Z T, Huang-Fu M Y, Xu W H, Han M. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment [J]. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV, 2019, 137: 122-30.
[21] Kang Z, Ding G, Meng Z, Meng Q. The rational design of cell-penetrating peptides for application in delivery systems [J]. Peptides, 2019, 121: 170149.
[22] Gulzar A, Xu J, Wang C, He F, Yang D, Gai S, Yang P, Lin J, Jin D, Xing B. Tumour microenvironment responsive nanoconstructs for cancer theranostic [J]. Nano Today, 2019, 26: 16-56.
[23] Lu J, Sun J, Li F, Wang J, Liu J, Kim D, Fan C, Hyeon T, Ling D. Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies [J]. Journal of the American Chemical Society, 2018, 140(32): 10071-4.
[24] Cao Z, Li W, Liu R, Li X, Li H, Liu L, Chen Y, Lv C, Liu Y. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems [J]. Biomedicine & Pharmacotherapy, 2019, 118: 109340.
[25] Yao Q, Kou L, Tu Y, Zhu L. MMP-Responsive 'Smart' Drug Delivery and Tumor Targeting [J]. Trends in pharmacological sciences, 2018, 39(8): 766-81.
[26] Synak A, Serdiuk I E, Grobelna B, Fudala R, Gryczynski I, Bojarski P. Spectroscopic method for estimation of MMP-9 enzyme concentration and activity [J]. Journal of Molecular Liquids, 2019, 286: 110936.
[27] Hoikkala S, Pääkkö P, Soini Y, Mäkitaro R, Kinnula V, Turpeenniemi-Hujanen T. Tissue MMP-2/TIMP-2-complex are better prognostic factors than serum MMP-2, MMP-9 or TIMP-1 in Stage I–III lung carcinoma [J]. Cancer Letters, 2006, 236(1): 125-32.
[28] Sienel W, Hellers J, Morresi-Hauf A, Lichtinghagen R, Mutschler W, Jochum M, Klein C, Passlick B, Pantel K. Prognostic impact of matrix metalloproteinase-9 in operable non-small cell lung cancer [J]. International journal of cancer, 2003, 103(5): 647-51.
[29] Jiang J, Shen N, Ci T, Tang Z, Gu Z, Li G, Chen X. Combretastatin A4 Nanodrug-Induced MMP9 Amplification Boosts Tumor-Selective Release of Doxorubicin Prodrug [J]. Advanced materials, 2019, 31(44): e1904278.
[30] Ansari C, Tikhomirov G A, Hong S H, Falconer R A, Loadman P M, Gill J H, Castaneda R, Hazard F K, Tong L, Lenkov O D, Felsher D W, Rao J, Daldrup-Link H E. Development of Novel Tumor-Targeted Theranostic Nanoparticles Activated by Membrane-Type Matrix Metalloproteinases for Combined Cancer Magnetic Resonance Imaging and Therapy [J]. Small, 2014, 10(3): 566-75.
[31] Juan Gallo N K, Ioannis Lavdas, Elizabeth Stevens, Quang-De Nguyen,, Marzena Wylezinska-Arridge E O A, * and Nicholas J. Long*. CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging.pdf [J]. Angewandte Communications, 2014.
[32] Yao Y, Cheng K, Cheng Z. Evaluation of a smart activatable MRI nanoprobe to target matrix metalloproteinases in the early-stages of abdominal aortic aneurysms [J]. Nanomedicine : nanotechnology, biology, and medicine, 2020, 26: 102177.
[33] Ali A, Zafar H, Zia M, Ul Haq I, Phull A R, Ali J S, Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles [J]. Nanotechnology, science and applications, 2016, 9: 49-67.
[34] Wang Z, Xue X, He Y, Lu Z, Jia B, Wu H, Yuan Y, Huang Y, Wang H, Lu H, Lam K S, Lin T Y, Li Y. Novel redox-responsive polymeric magnetosomes with tunable magnetic resonance property for in vivo drug release visualization and dual-modal cancer therapy [J]. Adv Funct Mater, 2018, 28(33).
[35] Zhou Z, Tian R, Wang Z, Yang Z, Liu Y, Liu G, Wang R, Gao J, Song J, Nie L, Chen X. Artificial local magnetic field inhomogeneity enhances T2 relaxivity [J]. Nature communications, 2017, 8: 15468. [36] Cho H J S Y H, Nam K S . Ginkgolide C Inhibits Platelet Aggregation in cAMP- and cGMPDependent Manner by Activating MMP-9 [J]. Biological & Pharmaceutical Bulletin, 2007, 30(12): 2344.
[37] Xu K, Ma C, Xu L, Ran J, Jiang L, He Y, Adel Abdo Moqbel S, Wang Z, Wu L. Polygalacic acid inhibits MMPs expression and osteoarthritis via Wnt/beta-catenin and MAPK signal pathways suppression [J]. International immunopharmacology, 2018, 63: 246-52.
[38] Bulte J, Douglas T, Witwer B, Zhang S C, Strable E, Lewis B K, Zywicke H, Miller B, Gelderen P V, Moskowitz B M. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells [J]. Nature Biotechnology, 2001, 19(12): 1141-7.