Biao Qu1, Zuwen Zhang2, Yewei Chen2, Chen Qian2, Taishan Kang3, Jianzhong Lin3, Lihua Chen4, Zhigang Wu5, Jiazheng Wang5, Gaofeng Zheng1, and Xiaobo Qu2
1Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China, 2Department of Electronic Science, Biomedical Intelligent Cloud R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China, 3Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University,, Xiamen, China, 4Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China, 5Philips, Beijing, China
Synopsis
Keywords: Image Reconstruction, Image Reconstruction
Radial sampling is a fast magnetic
resonance imaging technique. The projected fast iterative soft-thresholding
algorithm (pFISTA) has shown the advantage to solved tight frame sparse
reconstruction model for removing undersampling image artifacts. However, the
convergence of this algorithm under radial sampling has not been clearly set
up. In this work, the authors derived a theoretical convergence condition for
this algorithm and an optimal step size was further suggested to allow the
fastest convergence. Verifications were made in
vivo data of static brain imaging and dynamic contrast-enhanced (DCE) liver
imaging, demonstrating that the recommended parameter allowed fast convergence
in radial MRI.
Purpose
Magnetic resonance imaging (MRI) is a non-invasive and non-radioactive imaging technique that has been widely used in medical diagnosis. However, one of its limitations is long time cost. A projected fast iterative soft-thresholding algorithm (pFISTA) was proposed to achieve fast and low-error reconstruction [1]. its advantage is less requirement on memory space and a simpler algorithm setting [1-3]. Radial sampling MRI shows robustness to object motion [4-7] , e.g. vigorous patient activities in brain imaging [8], movement of liver or heart in free-breathing dynamic imaging [9-11]. With more practices of radial sampling, however, we found that it is hard to make pFISTA converge on different datasets. A comprehensive convergence analysis of pFISTA under radial sampling is lacking.Method
For static radial MRI reconstruction (Fig. 1), the target image $$$\mathbf{m}$$$ is reconstructed by solving the l1-norm minimization problem under a tight frame $$$\mathbf{\Psi}$$$ according to [1-3]: $$\mathop {\min }\limits_\mathbf{m} {\rm{ }}\lambda {\left\| {{\rm{\mathbf{\Psi}\mathbf{m}}}} \right\|_1} + \frac{1}{2}\left\| {\sqrt {{\rm{\mathbf{\tilde D}}}} ({\rm{\mathbf{\tilde y}}} - {\mathbf{\tilde {\cal F}}_{\cal N}}{\rm{\mathbf{\tilde S}\mathbf{m}}})} \right\|_2^2, \tag{1}$$where $$${\rm{\mathbf{\tilde y} = }}\left[ {{{\rm\mathbf{y}}_1}{;}{{\rm\mathbf{y}}_2}{;} \ldots {;}{{\rm\mathbf{y}}_J}} \right] \in \mathbb{C}{^{MJ}}$$$,$$${\rm{\mathbf{\tilde S} = }}\left[ {{{\rm\mathbf{S}}_1}{;}{{\rm\mathbf{S}}_2}{;} \ldots {;}{{\rm\mathbf{S}}_J}} \right]$$$,$$${\rm{{\tilde {\cal F}_{\cal N}} = }}\left[ {{{\rm{\cal F}}_{\cal N}}{;}{{\rm\mathbf{\cal F}}_{\cal N}}{;} \ldots {;}{{\rm{\cal F}}_{\cal N}}} \right]$$$,that saves k-space data, CSM and NUFFT operators of multi-coils, respectively. The $$${\left\| \cdot \right\|_1}$$$ and $$$ {\left\| \cdot \right\|_2}$$$ are the l1 and l2 norms, respectively. The is a regularization parameter that balances the sparsity and data consistency. The $$$ \lambda $$$ is a regularization parameter that balances the sparsity and data consistency.$$$\sqrt {\mathbf{\tilde D}} \in \mathbb{R}{^{MJ \times MJ}}$$$ represent density compensation.The reconstruction mosdel in Eq. (1) is solved with the pFISTA algorithm in an iterative manner:$${\mathbf{m}^{(k + 1)}} = {\mathbf{\Psi} ^*}{S_{\lambda \beta }}(\mathbf{\Psi} ({\mathbf{\hat m}^{(k)}} + \beta {\mathbf{\tilde S}^H}\tilde {\cal F}_{\cal N}^ * \mathbf{\tilde D}(\mathbf{y} - \tilde {\cal F}_{\cal N}^{}\mathbf{\tilde S}{\mathbf{\hat m}^{(k)}}))),\tag{2}$$where $$$k$$$ denotes the $$${k^{{\rm{th}}}}$$$ iteration,$$${\mathbf{\Psi} ^*}$$$ is the inverse transform of the tight frame $$${\mathbf{\Psi} }$$$,$$${\mathbf{\tilde S}^H}$$$ is the Hermitian transpose of $$${\mathbf{\tilde S}}$$$, $$$\tilde {\cal F}_{\cal N}^ * $$$ is the adjoint operator of the NUFFT operator $$$\tilde {\cal F}_{\cal N}$$$,$$${S_{\lambda \beta }}( \cdot )$$$ is an element-wise soft-thresholding operator defined as $$${S_{\lambda \beta }}(\alpha ) = \max \left\{ {\left| \alpha \right| - \lambda \beta ,0} \right\}\frac{\alpha } {{\left| \alpha \right|}}$$$ with the threshold $$$\lambda \beta$$$.The convergence of pFISTA highly depends on $$$\mathbf{B}$$$ under radial sampling, which is defined as$$\mathbf{B} = {\mathbf{\tilde S}^H}\tilde {\cal F}_{\cal N}^ * \mathbf{\tilde D}\tilde {\cal F}_{\cal N}^{}\mathbf{\tilde S}\tag{3}$$We were derived a theoretical convergence condition for this algorithm, the step size $$$\beta$$$ lies in the following range:$$0 < \beta \le \frac{1}{{{\mathbf{\sigma} _{\max }}(\mathbf{B})}} = \gamma\tag{4}
$$where $$${\mathbf{\sigma} _{\max }}(\mathbf{B})$$$ denotes largest eigenvalue of the $$$\mathbf{B}$$$ ,it is empirically
estimated by using the power iteration [12], we define $$$\gamma = 1/{\mathbf{\sigma} _{\max }}(\mathbf{B})$$$ for simple notation.
For DCE MRI reconstruction (Fig. 2), all image frames are reconstructed by solving the following optimization problem:$$\mathop {\min }\limits_\mathbf{m} {\rm{ }}\lambda {\left\| {{\bf{Am}}} \right\|_1} + \frac{1}{2}\left\| {\sqrt {{\bf{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over D} }}} ({\bf{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over y} }} - {{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over {\cal F}} }_{{\cal N}}}{\bf{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over S} m}})} \right\|_2^2,\tag{5}
$$where $$${\rm{\mathbf{m} = }}\left[ {{{\rm\mathbf{m}}_1}{;}{{\rm\mathbf{m}}_2}{;} \ldots {;}{{\rm\mathbf{m}}_F}} \right] \in \mathbb{C}{^{NF}}$$$ is a long column vector, $$${\rm\mathbf{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over y}= }}\left[ {{{{\rm\mathbf{\tilde y}}}_1}{;}{{{\rm\mathbf{\tilde y}}}_2}{;} \ldots {{{\rm\mathbf{\tilde y}}}_f} \ldots{;}{{{\rm\mathbf{\tilde y}}}_F}} \right] \in\mathbb{C} {^{JMF}}$$$ ,$$${\rm\mathbf{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over S}= }}\left[ {{{{\rm\mathbf{\tilde S}}}_1}{;}{{{\rm\mathbf{\tilde S}}}_2}{;} \ldots {{{\rm\mathbf{\tilde S}}}_f} \ldots{;}{{{\rm\mathbf{\tilde S}}}_F}} \right] \in\mathbb{C} {^{JMF\times NF}}$$$ and $$${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over {\cal F}} _{\cal N}}{\rm{ = }}\left[ {{{\tilde {\cal F}}_{\cal N}}{;}{{\tilde {\cal F}}_{\cal N}}{;} \ldots{;}{{\tilde {\cal F}}_{\cal N}}} \right] \in\mathbb{C} {^{JMF \times JNF}}$$$ saves the k-space data, sensitivity maps and NUFFT operators for multi-coils, respectively. The $$$\bf {\bf{A}}{\rm{ = }}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over \Psi } {\cal P}$$$ represent the sparse transform operator.
Eq. (5) is solved by iteratively addressing the
following sub-problems:
$$\bf {m^{(k + 1)}} = {{\cal P}^ * }{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over \Psi } ^*}{S_{\lambda \beta }}(\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over \Psi } {\cal P}({\hat m^{(k)}}_{} + \beta {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over S} ^H}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over {\cal F}} _{\cal N}^ * \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over D} (\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over y} - \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over {\cal F}} _{\cal N}^{}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over S} {\hat m^{(k)}}_{}{\rm{ }}))),\tag{6}$$where $$$\bf {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over \Psi } ^*}$$$ s the adjoint
operator of $$$\bf\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over \Psi }$$$,
$$$ {\cal P}$$$ is an operator that
extracts pixel values along the temporal dimension at a given spatial location.Results
Results Brain data of 3 subjects and liver DCE data of 3 subjects are used in our experiments. Quantification criterion of empirical convergence includes, objective function value $$$Q({{\bf{\alpha }}^{(k)}})$$$ and the difference value between two successively intermediate reconstruction $$${{\bf{m}}^{(k + 1)}}$$$ and $$${{\bf{m}}^{(k)}}$$$. For static radial imaging, the difference value and objective function value were tested on the brain imaging data (Fig. 3), both difference value and objective function converged when $$$\beta \le \gamma$$$ and converged fastest when $$$\beta = \gamma$$$ . For the liver DCE imaging, $$$\beta \le \gamma$$$ ensures the convergence and $$$\beta = \gamma$$$ leads to the fastest convergence (Fig. 4).Conclusion
In this work, under the radial sampling of static and dynamic MRI, we a derive theoretical convergence condition for the pFISTA in the tight-frame-based sparse image reconstruction and an optimal step size was suggested to ensure the fastest convergence. Experiments on in vivo data demonstrated that the recommended parameter allowed fast convergence in both static and dynamic radial sampling of MRI.Acknowledgements
Funding: This work was financially
supported by the National Key R&D Program of China (2017YFC0108703), National
Natural Science Foundation of China (62122064, 61971361 and 52275575), Natural
Science Foundation of Fujian Province (2020H6003), President Fund of Xiamen
University (0621ZK1035) and Xiamen University Nanqiang Outstanding Talents
Program.
The corresponding authors are Gaofeng Zheng and Xiaobo Qu
(Email: zheng_gf@xmu.edu.cn, quxiaobo@xmu.edu.cn).References
[1] Y.
Liu, Z. Zhan, J.-F. Cai, D. Guo, Z. Chen, X. Qu, Projected iterative
soft-thresholding algorithm for tight frames in compressed sensing magnetic
resonance imaging, IEEE Trans. Med. Imaging. 35 (2016) 2130-2140.
[2] X.
Zhang, H. Lu, D. Guo, L. Bao, F. Huang, Q. Xu, X. Qu, A guaranteed convergence
analysis for the projected fast iterative soft-thresholding algorithm in
parallel MRI, Med. Image Anal. 69 (2021) 101987.
[3] Y.
Hu, X. Zhang, D. Chen, Z. Yan, X. Shen, G. Yan, L. Ou-yang, J. Lin, J. Dong, X.
Qu, Spatiotemporal flexible sparse reconstruction for rapid dynamic
contrast-enhanced MRI, IEEE Trans. Biomed. Eng. 69 (2021) 229-243.
[4] K.T.
Block, M. Uecker, J. Frahm, Undersampled radial MRI with multiple coils.
Iterative image reconstruction using a total variation constraint, Magn. Reson.
Med. 57 (2007) 1086-1098.
[5] G.H.
Glover, J.M. Pauly, Projection reconstruction techniques for reduction of
motion effects in MRI, Magn. Reson. Med. 28 (1992) 275-289.
[6] K.L.
Wright, J.I. Hamilton, M.A. Griswold, V. Gulani, N. Seiberlich, Non-Cartesian
parallel imaging reconstruction, J. Magn. Reson. Imaging. 40 (2014) 1022-1040.
[7] J.C.
Ye, S. Tak, Y. Han, H.W. Park, Projection reconstruction MR imaging using
FOCUSS, Magn. Reson. Med. 57 (2007) 764-775.
[8] K.T.
Block, H. Chandarana, G. Fatterpekar, M. Hagiwara, S. Milla, T. Mulholland, M.
Bruno, C. Geppert, K. Sodickson, Improving the robustness of clinical
T1-weighted MRI using radial VIBE, Magnetom Flash. 5 (2013) 6-11.
[9] H.
Chandarana, L. Feng, T.K. Block, A.B. Rosenkrantz, R.P. Lim, J.S. Babb, D.K.
Sodickson, R. Otazo, Free-breathing contrast-enhanced multiphase MRI of the
liver using a combination of compressed sensing, parallel imaging, and
golden-angle radial sampling, Invest. Radiol. 48 (2013) 10-16.
[10] L.
Feng, R. Grimm, K.T. Block, H. Chandarana, S. Kim, J. Xu, L. Axel, D.K.
Sodickson, R. Otazo, Golden-angle radial sparse parallel MRI: Combination of
compressed sensing, parallel imaging, and golden-angle radial sampling for fast
and flexible dynamic volumetric MRI, Magn. Reson. Med. 72 (2014) 707-717.
[11] L.
Feng, T. Benkert, K.T. Block, D.K. Sodickson, R. Otazo, H. Chandarana, Compressed
sensing for body MRI, J. Magn. Reson. Imaging. 45 (2017) 966-987.
[12] T.E.
Booth, Power iteration method for the several largest eigenvalues and
eigenfunctions, Nucl. Sci. Eng. 154 (2006) 48-62.