Keywords: Psychiatric Disorders, Psychiatric Disorders, Early psychosis, First-episode schizophrenia
This study aims to investigate brain cortex alterations in early psychosis patients (n = 42) compared to healthy control subjects (n=35). Surface-based morphometric analysis using MP2RAGE images at 7T revealed significant clusters (corrected p<0.05) where the cortical area and cortex volume in early psychosis patients are reduced compared to healthy controls at the junction of lateral occipital, lingual and peri calcarine region at left hemisphere after permutation multiple comparison correction. Bilateral cortical areas, thickness, and volumes of the patients were reported to be changed at the surface vertex level.1. S. Lui et al., ‘Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study’, Am J Psychiatry, vol. 166, no. 2, pp. 196–205, Feb. 2009, doi: 10.1176/appi.ajp.2008.08020183.
2. C. Shah et al., ‘Common pattern of gray-matter abnormalities in drug-naive and medicated first-episode schizophrenia: a multimodal meta-analysis’, Psychol Med, vol. 47, no. 3, pp. 401–413, Feb. 2017, doi: 10.1017/S0033291716002683.
3. K. E. Lewandowski, S. Bouix, D. Ongur, and M. E. Shenton, ‘Neuroprogression across the Early Course of Psychosis †’, Journal of Psychiatry and Brain Science, vol. 5, no. 1, Feb. 2020, doi: 10.20900/jpbs.20200002.
4. G. Okubo et al., ‘MP2RAGE for deep gray matter measurement of the brain: A comparative study with MPRAGE’, J Magn Reson Imaging, vol. 43, no. 1, pp. 55–62, Jan. 2016, doi: 10.1002/jmri.24960.
5. A. Droby et al., ‘Whole brain and deep gray matter structure segmentation: Quantitative comparison between MPRAGE and MP2RAGE sequences’, PLOS ONE, vol. 16, no. 8, p. e0254597, Aug. 2021, doi: 10.1371/journal.pone.0254597.
6. Z. Wang, M. Cleusix, R. Jenni, P. Conus, K. Q. Do, and L. Xin, ‘Structural abnormalities in patients with early psychosis: a MP2RAGE-based morphometric study at 7T’, presented at the International Society for Magnetic Resonance in Medicine, London, 2022.
7. P. S. Baumann et al., ‘Treatment and early intervention in psychosis program (TIPP-Lausanne): Implementation of an early intervention programme for psychosis in Switzerland’, Early Interv Psychiatry, vol. 7, no. 3, pp. 322–328, Aug. 2013, doi: 10.1111/eip.12037.
8. J. P. Marques, T. Kober, G. Krueger, W. van der Zwaag, P.-F. Van de Moortele, and R. Gruetter, ‘MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field’, Neuroimage, vol. 49, no. 2, pp. 1271–1281, Jan. 2010, doi: 10.1016/j.neuroimage.2009.10.002.
9. J. Ashburner and K. J. Friston, ‘Unified segmentation’, NeuroImage, vol. 26, no. 3, pp. 839–851, Jul. 2005, doi: 10.1016/j.neuroimage.2005.02.018.
10. R. S. Desikan et al., ‘An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest’, NeuroImage, vol. 31, no. 3, pp. 968–980, Jul. 2006, doi: 10.1016/j.neuroimage.2006.01.021.
11. S. Rigucci et al., ‘Anatomical substrates of cognitive and clinical dimensions in first episode schizophrenia’, Acta Psychiatrica Scandinavica, vol. 128, no. 4, pp. 261–270, 2013, doi: 10.1111/acps.12051.
12. D. Tordesillas-Gutierrez et al., ‘Grey matter volume differences in non-affective psychosis and the effects of age of onset on grey matter volumes: A voxelwise study’, Schizophr Res, vol. 164, no. 1–3, pp. 74–82, May 2015, doi: 10.1016/j.schres.2015.01.032.
13. L. Asmal, S. du Plessis, M. Vink, B. Chiliza, S. Kilian, and R. Emsley, ‘Symptom attribution and frontal cortical thickness in first-episode schizophrenia’, Early Intervention in Psychiatry, vol. 12, no. 4, pp. 652–659, 2018, doi: 10.1111/eip.12358.
14. C. C. Schultz et al., ‘The visual cortex in schizophrenia: alterations of gyrification rather than cortical thickness--a combined cortical shape analysis’, Brain Struct Funct, vol. 218, no. 1, pp. 51–58, Jan. 2013, doi: 10.1007/s00429-011-0374-1.
15. K. Li, J. A. Sweeney, and X. P. Hu, ‘Context-dependent dynamic functional connectivity alteration of lateral occipital cortex in schizophrenia’, Schizophrenia Research, vol. 220, pp. 201–209, Jun. 2020, doi: 10.1016/j.schres.2020.03.020.
16. C. U. Lee et al., ‘Fusiform gyrus volume reduction in first-episode schizophrenia: a magnetic resonance imaging study’, Arch Gen Psychiatry, vol. 59, no. 9, pp. 775–781, Sep. 2002, doi: 10.1001/archpsyc.59.9.775.
17. N. I, Y. Ra, S. H, and G. C, ‘Patterns of cortical thinning in different subgroups of schizophrenia’, The British journal of psychiatry : the journal of mental science, vol. 206, no. 6, Jun. 2015, doi: 10.1192/bjp.bp.114.148510.
18. T. G. M. van Erp et al., ‘Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium’, Biological Psychiatry, vol. 84, no. 9, pp. 644–654, Nov. 2018, doi: 10.1016/j.biopsych.2018.04.023.
19. J. S. Kim, C. K. Chung, H. J. Jo, J. M. Lee, and J. S. Kown, ‘Regional thinning of cerebral cortical thickness in first-episode and chronic schizophrenia’, International Journal of Imaging Systems and Technology, vol. 22, no. 1, pp. 73–80, 2012, doi: 10.1002/ima.22002.
20. K. Wen et al., ‘Cortical thickness abnormalities in patients with first episode psychosis: a meta-analysis of psychoradiologic studies and replication in an independent sample’, Psychoradiology, vol. 1, no. 4, pp. 185–198, Dec. 2021, doi: 10.1093/psyrad/kkab015.