Keywords: Data Processing, Machine Learning/Artificial Intelligence
4D flow MRI suffers from different sources of noise and aliasing artifacts. Recent denoising techniques are time-consuming or dependent of parameter estimation. We developed a physics informed neural network with divergence-free vector potential as a non-parametric denoising technique for 4D flow MRI. Results from simulated pulsatile flow and CFD vascular model shows significant noise reduction and aliasing correction. Future work includes comparison with other techniques on different types of data and uncertainty quantification.1. Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. Journal of Magnetic Resonance Imaging. 2012;36(5):1015-1036. doi:10.1002/jmri.23632
2. Dyverfeldt, P., Bissell, M., Barker, A. J., Bolger, A. F., Carlhäll, C. J., Ebbers, T., ... & Markl, M. (2015). 4D flow cardiovascular magnetic resonance consensus statement. Journal of Cardiovascular Magnetic Resonance, 17(1), 1-19.
3. Bostan, E., Lefkimmiatis, S., Vardoulis, O., Stergiopulos, N., & Unser, M. (2014). Improved variational denoising of flow fields with application to phase-contrast MRI data. IEEE Signal Processing Letters, 22(6), 762-766.
4. Mura, J., Pino, A. M., Sotelo, J., Valverde, I., Tejos, C., Andia, M. E., ... & Uribe, S. (2016). Enhancing the velocity data from 4D flow MR images by reducing its divergence. IEEE transactions on medical imaging, 35(10), 2353-2364.
5. Zhang, J., Rothenberger, S. M., Brindise, M. C., Scott, M. B., Berhane, H., Baraboo, J. J., ... & Vlachos, P. P. (2021). Divergence-Free Constrained Phase Unwrapping and Denoising for 4D Flow MRI Using Weighted Least-Squares. IEEE transactions on medical imaging, 40(12), 3389-3399.
6. Ong, F., Uecker, M., Tariq, U., Hsiao, A., Alley, M. T., Vasanawala, S. S., & Lustig, M. (2015). Robust 4D flow denoising using divergence‐free wavelet transform. Magnetic resonance in medicine, 73(2), 828-842.
7. Deriaz, E., & Perrier, V. (2006). Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows. Journal of Turbulence, (7), N3.
8. Song, S. M., Napel, S., Glover, G. H., & Pelc, N. J. (1993). Noise reduction in three‐dimensional phase‐contrast MR velocity measurementsl. Journal of Magnetic Resonance Imaging, 3(4), 587-596.
9. Busch, J., Giese, D., Wissmann, L., & Kozerke, S. (2013). Reconstruction of divergence‐free velocity fields from cine 3D phase‐contrast flow measurements. Magnetic resonance in medicine, 69(1), 200-210.
10. Arzani, A., Wang, J. X., & D'Souza, R. M. (2021). Uncovering near-wall blood flow from sparse data with physics-informed neural networks. Physics of Fluids, 33(7), 071905.
11. Fathi, M. F., Perez-Raya, I., Baghaie, A., Berg, P., Janiga, G., Arzani, A., & D’Souza, R. M. (2020). Super-resolution and denoising of 4D-flow MRI using physics-informed deep neural nets. Computer Methods and Programs in Biomedicine, 197, 105729.
12. Young, D. L., Tsai, C. H., & Wu, C. S. (2015). A novel vector potential formulation of 3D Navier–Stokes equations with through-flow boundaries by a local meshless method. Journal of Computational Physics, 300, 219-240.
13. N.M. Wilson, A.K. Ortiz, and A.B. Johnson, The Vascular Model Repository: A Public Resource of Medical Imaging Data and Blood Flow Simulation Results, J. Med. Devices 7(4), 040923 (Dec 05, 2013) doi:10.1115/1.4025983.
14. Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059). PMLR.