Keywords: Signal Modeling, Multiple Sclerosis
Diffusion Tensor Imaging of the fornix promises to serve as an imaging biomarker for cognitive decline in multiple sclerosis and Alzheimer’s disease. As the fornix is surrounded by cerebrospinal fluid in the lateral ventricles, partial volume averaging can bias measures of tissue microstructure. Here, we use a high spatial resolution, multishell acquisition to test the methods for combating partial volume averaging in the fornix.We acknowledge support from the Imaging Institute of the Cleveland Clinic and Siemens Healthineers.
1. Phillips, M., Koenig, K. A., Beall, E. B., Stone, L., Zimbelman, J., Marrie, R. A., Sakaie, K. E., Rao, S. M. & Lowe, M. J. Diffusion tensor imaging measures of forniceal damage correlate with episodic memory dysfunction in multiple sclerosis patients. Multiple Sclerosis 2008; 14:S210-S210.
2. Koenig, K. A., Sakaie, K. E., Lowe, M. J., Lin, J., Stone, L., Bermel, R. A., Beall, E. B., Rao, S. M., Trapp, B. D. & Phillips, M. D. Hippocampal volume is related to cognitive decline and fornicial diffusion measures in multiple sclerosis. Magn Reson Imaging 2014; 32:354-358.
3. Koenig, K. A., Sakaie, K. E., Lowe, M. J., Lin, J., Stone, L., Bermel, R. A., Beall, E. B., Rao, S. M., Trapp, B. D. & Phillips, M. D. The relationship between cognitive function and high-resolution diffusion tensor MRI of the cingulum bundle in multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England) 2015; 21:1794-1801.
4. Nowrangi, M. A. & Rosenberg, P. B. The fornix in mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2015; 7:1.
5. Metzler-Baddeley, C., O'Sullivan, M. J., Bells, S., Pasternak, O. & Jones, D. K. How and how not to correct for CSF-contamination in diffusion MRI. Neuroimage 2012; 59:1394-1403.
6. Hoy, A. R., Koay, C. G., Kecskemeti, S. R. & Alexander, A. L. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage 2014; 103:323-333.
7. Bergmann, O., Henriques, R., Westin, C. F. & Pasternak, O. Fast and accurate initialization of the free-water imaging model parameters from multi-shell diffusion MRI. NMR Biomed 2020; 33:e4219.
8. Veraart, J., Novikov, D. S., Christiaens, D., Ades-Aron, B., Sijbers, J. & Fieremans, E. Denoising of diffusion MRI using random matrix theory. Neuroimage 2016; 142:394-406.
9. Lee, H. H., Novikov, D. S. & Fieremans, E. Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI. Magn Reson Med 2021; 86:2733-2750.
10. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. Neuroimage 2012; 62:782-790.
11. Henriques, R. N., Rokem, A., Garyfallidis, E., St-Jean, S., Peterson, E. T. & Correia, M. M. [Re] Optimization of a free water elimination two-compartment model for diffusion tensor imaging. ReScience 2017; 3:2.
12. Greve, D. N., Billot, B., Cordero, D., Hoopes, A., Hoffmann, M., Dalca, A. V., Fischl, B., Iglesias, J. E. & Augustinack, J. C. A deep learning toolbox for automatic segmentation of subcortical limbic structures from MRI images. Neuroimage 2021; 244:118610.
13. Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A. & Gee, J. C. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011; 54:2033-2044.
14. Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 2005; 26:839-851.
15. Jones, D. K. & Basser, P. J. "Squashing peanuts and smashing pumpkins": how noise distorts diffusion-weighted MR data. Magn Reson Med 2004; 52:979-993.
16. Moeller, S., Pisharady, P. K., Ramanna, S., Lenglet, C., Wu, X., Dowdle, L., Yacoub, E., Ugurbil, K. & Akcakaya, M. NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing. Neuroimage 2021; 226:117539.
17. Sakaie, K. & Lowe, M. Retrospective correction of bias in diffusion tensor imaging arising from coil combination mode. Magn Reson Imaging 2017; 37:203-208.