Keywords: Signal Modeling, Microstructure
Diffusion magnetic resonance imaging (dMRI) can detect sex differences in developmental populations, as shown previously using the conventional diffusion tensor imaging (DTI) model. However, DTI cannot model complex brain fiber orientations, which the advanced tensor distribution function (TDF) model does. Here we compared the two models’ sensitivity in detecting sex differences, with the goal of improving our understanding of WM sex differences during development. We discovered WM microstructure sex effects, with the TDF model detecting more regions with significant differences and yielding larger effect sizes. Our results suggest that TDF is better able to detect developmental sex effects on WM.NIMH Grant R01MH116147 to P.M.T.
NIMH Grant F32MH122057 to K.E.L.
1. Lawrence, K. E., Abaryan, Z., Laltoo, E., Hernandez, L. M., Gandal, M., McCracken, J. T., & Thompson, P. M. (2022). White matter microstructure shows sex differences in late childhood: Evidence from 6,797 children (p. 2021.08.19.456728). bioRxiv. https://doi.org/10.1101/2021.08.19.456728
2. Kaczkurkin, A. N., Raznahan, A., & Satterthwaite, T. D. (2019). Sex differences in the developing brain: Insights from multimodal neuroimaging. Neuropsychopharmacology, 44(1), Article 1.
https://doi.org/10.1038/s41386-018-0111-z
3. Tamnes, C. K., Roalf, D. R., Goddings, A.-L., & Lebel, C. (2018). Diffusion MRI of white matter microstructure development in childhood and adolescence: Methods, challenges and progress. Developmental Cognitive Neuroscience, 33, 161–175. https://doi.org/10.1016/j.dcn.2017.12.002
4. Basser, P. J., Mattiello, J., & LeBihan, D. (1994a). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267. https://doi.org/10.1016/S0006-3495(94)80775-1
5. Basser, P. J., Mattiello, J., & Lebihan, D. (1994b). Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. Journal of Magnetic Resonance, Series B, 103(3), 247–254. https://doi.org/10.1006/jmrb.1994.1037
6. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion Tensor Imaging of the Brain. Neurotherapeutics, 4(3), 316–329. https://doi.org/10.1016/j.nurt.2007.05.011
7. Jones, D. K. (2008). Studying connections in the living human brain with diffusion MRI. Cortex, 44(8), 936–952. https://doi.org/10.1016/j.cortex.2008.05.002
8. Leow, A. D., Zhu, S., Zhan, L., McMahon, K., de Zubicaray, G. I., Meredith, M., Wright, M. J., Toga, A. W., & Thompson, P. M. (2009). The tensor distribution function. Magnetic Resonance in Medicine, 61(1), 205–214. https://doi.org/10.1002/mrm.21852
9. Zhan, L., Leow, A. D., Zhu, S., Barysheva, M., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Wright, M. J., & Thompson, P. M. (2009). A Novel Measure of Fractional Anisotropy Based on the Tensor Distribution Function. In G.-Z. Yang, D. Hawkes, D. Rueckert, A. Noble, & C. Taylor (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009 (pp. 845–852). Springer. https://doi.org/10.1007/978-3-642-04268-3_104
10. Nir, T. M., Jahanshad, N., Villalon-Reina, J. E., Isaev, D., Zavaliangos-Petropulu, A., Zhan, L., Leow, A. D., Jack Jr., C. R., Weiner, M. W., Thompson, P. M., & Initiative (ADNI), for the A. D. N. (2017). Fractional anisotropy derived from the diffusion tensor distribution function boosts power to detect Alzheimer’s disease deficits. Magnetic Resonance in Medicine, 78(6), 2322–2333. https://doi.org/10.1002/mrm.26623
11. Lawrence, K. E., Nabulsi, L., Santhalingam, V., Abaryan, Z., Villalon-Reina, J. E., Nir, T. M., Ba Gari, I., Zhu, A. H., Haddad, E., Muir, A. M., Laltoo, E., Jahanshad, N., & Thompson, P. M. (2021). Age and sex effects on advanced white matter microstructure measures in 15,628 older adults: A UK biobank study. Brain Imaging and Behavior, 15(6), 2813–2823. https://doi.org/10.1007/s11682-021-00548-y
12. Zavaliangos-Petropulu, A., Nir, T. M., Thomopoulos, S. I., Reid, R. I., Bernstein, M. A., Borowski, B., Jack Jr., C. R., Weiner, M. W., Jahanshad, N., & Thompson, P. M. (2019). Diffusion MRI Indices and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3. Frontiers in Neuroinformatics, 13. https://www.frontiersin.org/articles/10.3389/fninf.2019.00002
13. Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., Vega-Potler, N., Langer, N., Alexander, A., Kovacs, M., Litke, S., O’Hagan, B., Andersen, J., Bronstein, B., Bui, A., Bushey, M., Butler, H., Castagna, V., Camacho, N., … Milham, M. P. (2017). An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data, 4(1), Article 1. https://doi.org/10.1038/sdata.2017.181
14. Jahanshad, N., Kochunov, P. V., Sprooten, E., Mandl, R. C., Nichols, T. E., Almasy, L., Blangero, J., Brouwer, R. M., Curran, J. E., de Zubicaray, G. I., Duggirala, R., Fox, P. T., Hong, L. E., Landman, B. A., Martin, N. G., McMahon, K. L., Medland, S. E., Mitchell, B. D., Olvera, R. L., … Glahn, D. C. (2013). Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA–DTI working group. NeuroImage, 81, 455–469. https://doi.org/10.1016/j.neuroimage.2013.04.061
15. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024
16. Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A. V., Mahmood, A., Woods, R., Toga, A. W., Pike, G. B., Neto, P. R., Evans, A., Zhang, J., Huang, H., Miller, M. I., van Zijl, P., & Mazziotta, J. (2008). Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage, 40(2), 570–582. https://doi.org/10.1016/j.neuroimage.2007.12.035