Keywords: Multiple Sclerosis, White Matter, myelin, axons, g-ratio, brain, microstructure, lesions, normal appearing white matter, multiple sclerosis
G-ratio is the ratio of the inner axonal diameter to the total outer diameter, including myelin. MRI-derived g-ratios in multiple sclerosis (MS) may convey microstructural tissue abnormalities. G-ratios were estimated using myelin water fraction scaled to myelin volume fraction, and axonal metrics from Diffusion Basis Spectrum Imaging (DBSI), Neurite Orientation Dispersion and Density Imaging (NODDI), Spherical Mean Technique (SMT), and ActiveAx for axon/fiber volume fraction in 122 MS patients. DBSI and ActiveAx derived g-ratios were higher in lesions than normal appearing white matter (NAWM), reflecting MS pathology. NODDI and SMT derived g-ratios were unexpectedly lower in lesions than NAWM.
The collection of the data was funded by the MS Society of Canada and F. Hoffman La Roche. TSJ was funded by an UBC MS Connect Summer Studentship Award funded from the Christopher Foundation and an endMS Master’s Studentship award from the Multiple Sclerosis Society of Canada. Thank you to the MRI technologists at the UBC MRI Research Center, the neurologists and staff at the UBC MS Clinic, as well as the study participants and their families. This work was conducted on the traditional, ancestral, and unceded (stolen) territories of Coast Salish Peoples, including the territories of the xwməθkwəy̓əm (Musqueam), Skwxwú7mesh (Squamish), Stó:lō and Səl̓ílwətaʔ/Selilwitulh (Tsleil-Waututh) Nations. As settler scholars who live and work on this land, we think its important to continue work understanding and dismantling how educational institutions participate in colonization.
1. Atlas of MS 3rd edition. September 2020.
2. Lubetzki C, Zalc B, Williams A, Stadelmann C, Stankoff B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 2020;19(8):678-688. doi:10.1016/S1474-4422(20)30140-X
3. Campbell JSW, Leppert IR, Narayanan S, et al. Promise and pitfalls of g-ratio estimation with MRI. NeuroImage. 2018;182:80-96. doi:10.1016/j.neuroimage.2017.08.038
4. York EN, Martin SJ, Meijboom R, et al. MRI-derived g-ratio and lesion severity in newly diagnosed multiple sclerosis. Brain Commun. 2021;3(4):fcab249. doi:10.1093/braincomms/fcab249
5. Stikov N, Campbell JSW, Stroh T, et al. In vivo histology of the myelin g-ratio with magnetic resonance imaging. NeuroImage. 2015;118:397-405. doi:10.1016/j.neuroimage.2015.05.023
6. Yu F, Fan Q, Tian Q, et al. Imaging G-Ratio in Multiple Sclerosis Using High-Gradient Diffusion MRI and Macromolecular Tissue Volume. AJNR Am J Neuroradiol. 2019;40(11):1871-1877. doi:10.3174/ajnr.A6283
7. Stikov N, Perry LM, Mezer A, et al. Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure. NeuroImage. 2011;54(2):1112-1121. doi:10.1016/j.neuroimage.2010.08.068
8. Berg R, Menegaux A, Guillaume G, et al. Towards advanced microstructural analyses of white matter: Quantitative regional comparison of different myelin measures. ISMRM 2020 P46.
9. Whittall KP, MacKay AL. Quantitative interpretation of NMR relaxation data. J Magn Reson 1969. 1989;84(1):134-152. doi:10.1016/0022-2364(89)90011-5
10. Prasloski T, Mädler B, Xiang QS, MacKay A, Jones C. Applications of stimulated echo correction to multicomponent T2 analysis. Magn Reson Med. 2012;67(6):1803-1814. doi:10.1002/mrm.23157
11. Laule C, Leung E, Li DK, et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler J. 2006;12(6):747-753. doi:10.1177/1352458506070928
12. Jung W, Lee J, Shin HG, et al. Whole brain g-ratio mapping using myelin water imaging (MWI) and neurite orientation dispersion and density imaging (NODDI). NeuroImage. 2018;182:379-388. doi:10.1016/j.neuroimage.2017.09.053
13. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012;61(4):1000-1016. doi:10.1016/j.neuroimage.2012.03.072
14. Lakhani DA, Schilling KG, Xu J, Bagnato F. Advanced Multicompartment Diffusion MRI Models and Their Application in Multiple Sclerosis. Am J Neuroradiol. 2020;41(5):751-757. doi:10.3174/ajnr.A6484
15. Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC. Multi-compartment microscopic diffusion imaging. NeuroImage. 2016;139:346-359. doi:10.1016/j.neuroimage.2016.06.002
16. Sepehrband F, Alexander DC, Kurniawan ND, Reutens DC, Yang Z. Towards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRI. NMR Biomed. 2016;29(3):293-308. doi:10.1002/nbm.3462
17. Alexander DC, Hubbard PL, Hall MG, et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage. 2010;52(4):1374-1389. doi:10.1016/j.neuroimage.2010.05.043
18. Wang Y, Sun P, Wang Q, et al. Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. Brain. 2015;138(5):1223-1238. doi:10.1093/brain/awv046
19. Oshio K, Feinberg DA. GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med. 1991;20(2):344-349. doi:10.1002/mrm.1910200219
20. Wang Y, Wang Q, Haldar JP, et al. Quantification of increased cellularity during inflammatory demyelination. Brain J Neurol. 2011;134(Pt 12):3590-3601. doi:10.1093/brain/awr307
21. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62(2):782-790. doi:10.1016/j.neuroimage.2011.09.015
22. Daducci A, Canales-Rodríguez EJ, Zhang H, Dyrby TB, Alexander DC, Thiran JP. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. NeuroImage. 2015;105:32-44. doi:10.1016/j.neuroimage.2014.10.026
23. Johnson D, Ricciardi A, Brownlee W, et al. Comparison of Neurite Orientation Dispersion and Density Imaging and Two-Compartment Spherical Mean Technique Parameter Maps in Multiple Sclerosis. Front Neurol. 2021;12:662855. doi:10.3389/fneur.2021.662855
24. West KL, Kelm ND, Carson RP, Alexander DC, Gochberg DF, Does MD. Experimental studies of g-ratio MRI in ex vivo mouse brain. NeuroImage. 2018;167:366-371. doi:10.1016/j.neuroimage.2017.11.064
25. McAusland J, Tam RC, Wong E, Riddehough A, Li DKB. Optimizing the use of radiologist seed points for improved multiple sclerosis lesion segmentation. IEEE Trans Biomed Eng. 2010;57(11). doi:10.1109/TBME.2010.2055865
26. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45-57. doi:10.1109/42.906424
27. DeLuca GC, Ebers GC, Esiri MM. Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts. Brain. 2004;127(5):1009-1018. doi:10.1093/brain/awh118Figure 1: Demographic information of participants. (CIS: clinically isolated syndrome; EDSS: expanded disability status scale; PPMS: primary progressive multiple sclerosis (MS); RRMS: relapsing remitting MS; SPMS: secondary progressive MS)
Figure 2: Representative slice of 3DT1 structural scan, 3DT1 structural scan with lesion mask overlaid, myelin volume fraction, fiber/axonal volume fraction, and g-ratios maps for an MS patient. (DBSI: Diffusion Basis Spectrum Imaging, NODDI: Neurite Density Index, SMT: Spherical Mean Technique)
Figure 4: Box plots between g-ratios in normal appearing white matter (NAWM) and lesions in different analysis methods for all MS. (NODDI: Neurite Density Index, DBSI: Diffusion Basis Spectrum Imaging, SMT: Spherical Mean Technique)