Keywords: Cancer, fMRI, rectal cancer
Early imaging prediction of neoadjuvant chemotherapy (NACT) response would enable a personalized treatment approach to improve therapeutic response and avoid treatment morbidity in rectal cancer. Morphological changes base on T2 weighted MRI and free dispersion limitation of water molecules in tumor have limited value in evaluating efficacy after NACT. Amide proton transfer (APT)–weighted MRI, indirectly detecting the concentration of tissue macromolecular proteins, could help to inform us of the proliferation and biological status of tumor cells. The aim of this study is to determine if APT MRI is useful in early assessment of treatment response in persons with rectal cancer.[1] Glynne-Jones, R., Wyrwicz, L., Tiret, E., Brown, G., Rödel, C., Cervantes, A., Arnold, D., & ESMO Guidelines Committee (2017). Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology, 28(suppl_4), iv22–iv40. https://doi.org/10.1093/annonc/mdx224
[2] Shiraishi, T., Sasaki, T., Ikeda, K., Tsukada, Y., Nishizawa, Y., & Ito, M. (2019). Predicting prognosis according to preoperative chemotherapy response in patients with locally advanced lower rectal cancer. BMC cancer, 19(1), 1222. https://doi.org/10.1186/s12885-019-6424-4
[3] M. Maas, P.J. Nelemans, V. Valentini, et al., Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data, Lancet Oncol. 11 (2010) 835–844, https://doi. org/10.1016/s1470-2045(10)70172-8.
[4] Deng, X., Wu, Q., Bi, L., Yu, Y., Huang, S., He, D., Wu, B., Gou, H., Meng, W., Qiu, M., He, Y., & Wang, Z. (2021). Early response to upfront neoadjuvant chemotherapy (CAPOX) alone in low- and intermediate-risk rectal cancer: a single-arm phase II trial. The British journal of surgery, 109(1), 121–128. https://doi.org/10.1093/bjs/znab388
[5] Ha, H. I., Kim, A. Y., Yu, C. S., Park, S. H., & Ha, H. K. (2013). Locally advanced rectal cancer: diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. European radiology, 23(12), 3345–3353. https://doi.org/10.1007/s00330-013-2936-5
[6] Beets-Tan, R. G., & Beets, G. L. (2014). MRI for assessing and predicting response to neoadjuvant treatment in rectal cancer. Nature reviews. Gastroenterology & hepatology, 11(8), 480–488. https://doi.org/10.1038/nrgastro.2014.41
[7] Zhou, J., Payen, J. F., Wilson, D. A., Traystman, R. J., & van Zijl, P. C. (2003). Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nature medicine, 9(8), 1085–1090. https://doi.org/10.1038/nm907
[8] Enkhbaatar, N. E., Inoue, S., Yamamuro, H., Kawada, S., Miyaoka, M., Nakamura, N., Sadahiro, S., & Imai, Y. (2018). MR Imaging with Apparent Diffusion Coefficient Histogram Analysis: Evaluation of Locally Advanced Rectal Cancer after Chemotherapy and Radiation Therapy. Radiology, 288(1), 129–137. https://doi.org/10.1148/radiol.2018171804
[9] Martens, M. H., Lambregts, D. M., Papanikolaou, N., Heijnen, L. A., Riedl, R. G., zur Hausen, A., Maas, M., Beets, G. L., & Beets-Tan, R. G. (2014). Magnetization transfer ratio: a potential biomarker for the assessment of postradiation fibrosis in patients with rectal cancer. Investigative radiology, 49(1), 29–34. https://doi.org/10.1097/RLI.0b013e3182a3459b
[10] Martens, M. H., Lambregts, D. M., Papanikolaou, N., Heijnen, L. A., Riedl, R. G., zur Hausen, A., Maas, M., Beets, G. L., & Beets-Tan, R. G. (2014). Magnetization transfer ratio: a potential biomarker for the assessment of postradiation fibrosis in patients with rectal cancer. Investigative radiology, 49(1), 29–34. https://doi.org/10.1097/RLI.0b013e3182a3459b
[11] Chen, W., Mao, L., Li, L., Wei, Q., Hu, S., Ye, Y., Feng, J., Liu, B., & Liu, X. (2021). Predicting Treatment Response of Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Using Amide Proton Transfer MRI Combined With Diffusion-Weighted Imaging. Frontiers in oncology, 11, 698427. https://doi.org/10.3389/fonc.2021.698427
[12] Li, J., Lin, L., Gao, X., Li, S., & Cheng, J. (2022). Amide Proton Transfer Weighted and Intravoxel Incoherent Motion Imaging in Evaluation of Prognostic Factors for Rectal Adenocarcinoma. Frontiers in oncology, 11, 783544. https://doi.org/10.3389/fonc.2021.783544
[13] Nishie, A., Takayama, Y., Asayama, Y., Ishigami, K., Ushijima, Y., Okamoto, D., Fujita, N., Tsurumaru, D., Togao, O., Manabe, T., Oki, E., Kubo, Y., Hida, T., Hirahashi-Fujiwara, M., Keupp, J., & Honda, H. (2018). Amide proton transfer imaging can predict tumor grade in rectal cancer. Magnetic resonance imaging, 51, 96–103. https://doi.org/10.1016/j.mri.2018.04.017
[14] Li, L., Chen, W., Yan, Z., Feng, J., Hu, S., Liu, B., & Liu, X. (2020). Comparative Analysis of Amide Proton Transfer MRI and Diffusion-Weighted Imaging in Assessing p53 and Ki-67 Expression of Rectal Adenocarcinoma. Journal of magnetic resonance imaging : JMRI, 52(5), 1487–1496. https://doi.org/10.1002/jmri.27212
[15] Chen, W., Li, L., Yan, Z., Hu, S., Feng, J., Liu, G., Liu, B., & Liu, X. (2021). Three-dimension amide proton transfer MRI of rectal adenocarcinoma: correlation with pathologic prognostic factors and comparison with diffusion kurtosis imaging. European radiology, 31(5), 3286–3296. https://doi.org/10.1007/s00330-020-07397-1