Keywords: Hyperpolarized MR (Non-Gas), Contrast Agent, Contrast Mechanism
In this work, we studied the dynamic nuclear polarization (DNP) process of [15N3]metronidazole (MNZ), an FDA-approved antibiotic that achieved good polarization (~6%) with very short polarization build-up time constants (~12min). We used Electron Paramagnetic Resonance (EPR) spectroscopy to show that a sample of [15N3]MNZ + trityl AH111501 had narrower EPR linewidth and larger magnitude than AH111501 alone, indicating an efficient polarization transfer from the radical electrons to 15N and supporting our observations of fast DNP buildup. We also demonstrated that an addition of gadolinium-based compound to the [15N3]MNZ +AH111501 sample broadened the EPR spectrum and prolonged DNP buildup as observed.1] C. Cudalbu, A. Comment, F. Kurdzesau, R. B. van Heeswijk, K. Uffmann, S. Jannin, V. Denisov, D. Kirik, R. Gruetter, Physical Chemistry Chemical Physics 2010, 12, 5818.
[2] C. Morze, J. A. Engelbach, G. D. Reed, A. P. Chen, J. D. Quirk, T. Blazey, R. Mahar, C. R. Malloy, J. R. Garbow, M. E. Merritt, Magn Reson Med 2021, 85, 1814–1820.
[3] I. Marin-Montesinos, J. C. Paniagua, M. Vilaseca, A. Urtizberea, F. Luis, M. Feliz, F. Lin, S. van Doorslaer, M. Pons, Physical Chemistry Chemical Physics 2015, 17, 5785–5794.
[4] F. Jähnig, G. Kwiatkowski, A. Däpp, A. Hunkeler, B. H. Meier, S. Kozerke, M. Ernst, Physical Chemistry Chemical Physics 2017, 19, 19196–19204.
[5] A. Capozzi, S. Patel, W. T. Wenckebach, M. Karlsson, M. H. Lerche, J. H. Ardenkjær-Larsen, J Phys Chem Lett 2019, 10, 3420–3425.
[6] D. Guarin, S. Marhabaie, A. Rosso, D. Abergel, G. Bodenhausen, K. L. Ivanov, D. Kurzbach, J Phys Chem Lett 2017, 8, 5531–5536.
[7] J. H. Ardenkjaer-Larsen, Journal of Magnetic Resonance 2016, 264, 3–12.
[8] S. J. Kohler, Y. Yen, J. Wolber, A. P. Chen, M. J. Albers, R. Bok, V. Zhang, J. Tropp, S. Nelson, D. B. Vigneron, J. Kurhanewicz, R. E. Hurd, Magn Reson Med 2007, 58, 65–69.
[9] A. Comment, Journal of Magnetic Resonance 2016, 264, 39–48.
[10] J. Kurhanewicz, D. B. Vigneron, J. H. Ardenkjaer-Larsen, J. A. Bankson, K. Brindle, C. H. Cunningham, F. A. Gallagher, K. R. Keshari, A. Kjaer, C. Laustsen, D. A. Mankoff, M. E. Merritt, S. J. Nelson, J. M. Pauly, P. Lee, S. Ronen, D. J. Tyler, S. S. Rajan, D. M. Spielman, L. Wald, X. Zhang, C. R. Malloy, R. Rizi, Neoplasia 2019, 21, 1–16.
[11] Z. J. Wang, M. A. Ohliger, P. E. Z. Larson, J. W. Gordon, R. A. Bok, J. Slater, J. E. Villanueva-Meyer, C. P. Hess, J. Kurhanewicz, D. B. Vigneron, Radiology 2019, 291, 273–284.
[12] M. Kaushik, T. Bahrenberg, T. v. Can, M. A. Caporini, R. Silvers, J. Heiliger, A. A. Smith, H. Schwalbe, R. G. Griffin, B. Corzilius, Physical Chemistry Chemical Physics 2016, 18, 27205–27218.
[13] A. Abragam, M. Goldman, Reports on Progress in Physics 1978, 41, 395–467.
[14] D. O. Guarin Bedoya, E. E. Hardy, A. Smoilenko, S. Joshi, J. Stockman, J. H. Ardnkjaer-Larsen, M. S. Rosen, B. Goodson, T. Theis, E. Chekmenev, Y.-F. Yen, in 0th Annual Meeting of the International Society of Magnetic Resonance in Medicin, London, 2022, p. 0838.
[15] J. H. Ardenkjær‐Larsen, S. Bowen, J. R. Petersen, O. Rybalko, M. S. Vinding, M. Ullisch, N. Chr. Nielsen, Magn Reson Med 2019, 81, 2184–2194.
[16] A. Salahuddin, S. M. Agarwal, F. Avecilla, A. Azam, Bioorg Med Chem Lett 2012, 22, 5694–5699.