Keywords: Heart, Diffusion Tensor Imaging
Cardiac Diffusion Tensor Imaging (cDTI) is prone to imaging artefacts including distortion, signal dropout, and misregistration even after post-processing. We developed a method for image rejection based on a comparison between the observed images and the corresponding set of predicted images generated by tensor models fit to the observed data. A rejection threshold to exclude images from subsequent refitting of the tensor model can be chosen by the user with a simple graphical method.1. Niethammer, M., Bouix, S., Aja-Fernández, S., Westin, C.-F., & Shenton, M. E. (2007). Outlier Rejection for Diffusion Weighted Imaging. In N. Ayache, S. Ourselin, & A. Maeder (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007 (pp. 161–168). Springer.
2. Zhou, Z., Liu, W., Cui, J., Wang, X., Arias, D., Wen, Y., Bansal, R., Hao, X., Wang, Z., Peterson, B. S., & Xu, D. (2011). Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares. Magnetic Resonance Imaging, 29(2), 230–242.
3. Li, X., Yang, J., Gao, J., Luo, X., Zhou, Z., Hu, Y., Wu, E. X., & Wan, M. (2014). A Robust Post-Processing Workflow for Datasets with Motion Artifacts in Diffusion Kurtosis Imaging. PLoS ONE, 9(4), e94592.
4. Sairanen, V., Leemans, A., & Tax, C. M. W. (2018). Fast and accurate Slicewise OutLIer Detection (SOLID) with informed model estimation for diffusion MRI data. NeuroImage, 181, 331–346.
5. Ferreira, P. F., Martin, R. R., Scott, A. D., Khalique, Z., Yang, G., Nielles-Vallespin, S., Pennell, D. J., & Firmin, D. N. (2020). Automating in vivo cardiac diffusion tensor postprocessing with deep learning–based segmentation. Magnetic Resonance in Medicine, 84(5), 2801–2814.
6. Das, A., Kelly, C., Teh, I., Nguyen, C., Brown, L. A. E., Chowdhary, A., Jex, N., Thirunavukarasu, S., Sharrack, N., Gorecka, M., Swoboda, P. P., Greenwood, J. P., Kellman, P., Moon, J. C., Davies, R. H., Lopes, L. R., Joy, G., Plein, S., Schneider, J. E., & Dall’Armellina, E. (2022). Phenotyping hypertrophic cardiomyopathy using cardiac diffusion magnetic resonance imaging: The relationship between microvascular dysfunction and microstructural changes. European Heart Journal. Cardiovascular Imaging, 23(3), 352–362.
7. Chang, L.-C., Jones, D. K., & Pierpaoli, C. (2005). RESTORE: Robust estimation of tensors by outlier rejection. Magnetic Resonance in Medicine, 53(5), 1088–1095.
8. Chang, L.-C., Walker, L., & Pierpaoli, C. (2012). Informed RESTORE: A method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts: Informed RESTORE. Magnetic Resonance in Medicine, 68(5), 1654–1663.
9. Collier, Q., Veraart, J., Jeurissen, B., den Dekker, A. J., & Sijbers, J. (2015). Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters: IRLLS for Estimation of Diffusion MR Parameters. Magnetic Resonance in Medicine, 73(6), 2174–2184.