Keywords: Vessels, Cardiovascular, T2*-mapping
This study used T2*BOLD and QFR to evaluate coronary arteries with hemodynamic changes in coronary artery disease. Fifty patients with at least 1 significant coronary artery stenosis (diameter stenosis >50%) and 21 healthy control subjects underwent coronary angiography combined with QFR measurements and CMR. The CMR protocol consisted of T2* mapping and resting perfusion, contrasted with QFR. QFR≤0.80 was considered to indicate the presence of hemodynamic obstruction. Our study revealed that T2* BOLD and QFR have good agreement in detecting hemodynamic changes of stenotic coronary arteries. T2* BOLD is superior to semiquantitative perfusion imaging in analyzing myocardial perfusion without stress.1. Nichols, M., et al., Cardiovascular disease in Europe: epidemiological update. European heart journal, 2013. 34(39): p. 3028-34.
2. Neumann, F., et al., 2018 ESC/EACTS Guidelines on myocardial revascularization. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2019. 14(14): p. 1435-1534.
3. Westra, J., et al., Evaluation of Coronary Artery Stenosis by Quantitative Flow Ratio During Invasive Coronary Angiography: The WIFI II Study (Wire-Free Functional Imaging II). Circ Cardiovasc Imaging, 2018. 11(3): p. e007107.
4. Kirigaya, H., et al., Diagnostic performance and limitation of quantitative flow ratio for functional assessment of intermediate coronary stenosis. Journal of cardiology, 2021. 77(5): p. 492-499.
5. Tanigaki, T., et al., QFR Versus FFR Derived From Computed Tomography for Functional Assessment of Coronary Artery Stenosis. JACC. Cardiovascular interventions, 2019. 12(20): p. 2050-2059.
6. Song L, X.B., Tu S, Guan C, Jin Z, Yu B, Fu G, Zhou Y, Wang J'aJ’a, Chen Y,Pu J, Chen L, Qu X, Yang J, Liu X, Guo L, Shen C, Zhang Y, Zhang Q, Pan H, Zhang R, Liu J, Zhao Y, Wang Y, Dou K, Kirtane AJ, Wu Y, Wijns W, Yang W, Leon MB, Qiao S, Stone GW, Angiographic Quantitative Flow Ratio-Guided Coronary Intervention: Two-Year Outcomes of the FAVOR III China Trial, Journal of the American College of Cardiology. JACC Journals, 2022.
7. Xu, B., et al., Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial. Lancet (London, England), 2021. 398(10317): p. 2149-2159.
8. Foley, J.R., S. Plein, and J.P. Greenwood, Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques. World J Cardiol, 2017. 9(2): p. 92-108.
9. Bazoukis, G., et al., Contemporary Role of Cardiac Magnetic Resonance in the Management of Patients with Suspected or Known Coronary Artery Disease. Medicina (Kaunas), 2021. 57(7).
10. Everaars, H., et al., Cardiac Magnetic Resonance for Evaluating Nonculprit Lesions After Myocardial Infarction: Comparison With Fractional Flow Reserve. JACC. Cardiovascular imaging, 2020. 13(3): p. 715-728.
11. Sharrack, N., et al., How to do quantitative myocardial perfusion cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging, 2022. 23(3): p. 315-318.
12. Franks, R., S. Plein, and A. Chiribiri, Clinical Application of Dynamic Contrast Enhanced Perfusion Imaging by Cardiovascular Magnetic Resonance. Front Cardiovasc Med, 2021. 8: p. 768563.
13. J. Ranjit Arnold, M.J.-H., Theodoros D. Karamitsos, Jane M. Francis, Paul Bhamra-Ariza, Rizwan Sarwar, Robin Choudhury, Joseph B. Selvanayagam, Stefan Neubauer, Detection of Coronary Stenosis at Rest Using BOLD-CMR. JACC: Cardiovascular Imaging, 2017. 10(5): p. 600-601.
14. van den Boomen, M., et al., Blood Oxygen Level-Dependent MRI of the Myocardium with Multiecho Gradient-Echo Spin-Echo Imaging. Radiology, 2020. 294(3): p. 538-545.
15. Yang, H.J., et al., Heart Rate-Independent 3D Myocardial Blood Oxygen Level-Dependent MRI at 3.0 T with Simultaneous (13)N-Ammonia PET Validation. Radiology, 2020. 295(1): p. 82-93.
16. Chen, B., et al., BOLD cardiac MRI for differentiating reversible and irreversible myocardial damage in ST segment elevation myocardial infarction. European radiology, 2019. 29(2): p. 951-962.
17. Triadyaksa, P., M. Oudkerk, and P.E. Sijens, Cardiac T2 * mapping: Techniques and clinical applications. J Magn Reson Imaging, 2020. 52(5): p. 1340-1351.
18. Huelnhagen, T., et al., Myocardial effective transverse relaxation time T2* Correlates with left ventricular wall thickness: A 7.0 T MRI study. Magnetic resonance in medicine, 2017. 77(6): p. 2381-2389.
19. Donato, P., et al., Correspondence between left ventricular 17 myocardial segments and coronary anatomy obtained by multi-detector computed tomography: an ex vivo contribution. Surg Radiol Anat, 2012. 34(9): p. 805-10.
20. Ortiz-Perez, J.T., et al., Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging, 2008. 1(3): p. 282-93.
21. Dai, N., et al., Prognostic Implications of Quantitative Flow Ratio-Derived Physiological 2-Dimensional Residual Disease Patterns After Stenting. JACC. Cardiovascular interventions, 2022. 15(16): p. 1624-1634.
22. Dettori, R., et al., Quantitative Flow Ratio Is Associated with Extent and Severity of Ischemia in Non-Culprit Lesions of Patients with Myocardial Infarction. J Clin Med, 2021. 10(19).
23. Milzi, A., et al., Quantitative flow ratio (QFR) identifies functional relevance of non-culprit lesions in coronary angiographies of patients with acute myocardial infarction. Clin Res Cardiol, 2021. 110(10): p. 1659-1667.
24. Sejr-Hansen, M., et al., Comparison of quantitative flow ratio and fractional flow reserve with myocardial perfusion scintigraphy and cardiovascular magnetic resonance as reference standard. A Dan-NICAD substudy. Int J Cardiovasc Imaging, 2020. 36(3): p. 395-402.
25. Danad, I., et al., Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. European heart journal, 2017. 38(13): p. 991-998.
26. Seraphim, A., et al., Quantitative Myocardial Perfusion Predicts Outcomes in Patients With Prior Surgical Revascularization. J Am Coll Cardiol, 2022. 79(12): p. 1141-1151.
27. Brown, L.A.E., et al., Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects. J Cardiovasc Magn Reson, 2018. 20(1): p. 48.
28. Arnold, J., et al., Detection of Coronary Stenosis at Rest Using BOLD-CMR. JACC. Cardiovascular imaging, 2017. 10(5): p. 600-601.
29. Friedrich, M. and T. Karamitsos, Oxygenation-sensitive cardiovascular magnetic resonance. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance, 2013. 15: p. 43.
30. Walcher, T., et al., Myocardial perfusion reserve assessed by T2-prepared steady-state free precession blood oxygen level-dependent magnetic resonance imaging in comparison to fractional flow reserve. Circulation. Cardiovascular imaging, 2012. 5(5): p. 580-6.
Table1.Values are mean ± SD, n(%) or median (interquartile range)
PCI = percutaneous coronary intervention; ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; BNP = brain natriuretic peptide; LAD = left anterior descending; LCX =left circumflex(LCX); RCA = right coronary artery; LVEDV = left ventricular end-diastolic volume; LVESV = left ventricular end-systolic volume; SV = stroke volume; CO = cardiac output; LV mass = left ventricular mass; LVCI = left ventricular cardiac index; LVEF = left ventricular ejection fraction; LGE = late gadolinium enhancement