Keywords: Cancer, Preclinical, Prostate Cancer
Increased utilization of glutamine is characteristic of many advanced, aggressive cancers. Established glutamine imaging strategies require the use of labeled probes (positron emission tomography, hyperpolarized spectroscopy) that can limit their accessibility. Here, we investigated the utility of chemical exchange saturation transfer (CEST) MRI upon intravenous injection of unlabeled alanine to monitor differences in cellular glutamine uptake as a potentially complementary imaging biomarker for profiling cancers and monitoring their progression.1. Sun, H.-W.; Yu, X.-J.; Wu, W.-C.; Chen, J.; Shi, M.; Zheng, L.; Xu, J., GLUT1 and ASCT2 as Predictors for Prognosis of Hepatocellular Carcinoma. PloS one 2016, 11 (12), e0168907.
2. Shimizu, K.; Kaira, K.; Tomizawa, Y.; Sunaga, N.; Kawashima, O.; Oriuchi, N.; Tominaga, H.; Nagamori, S.; Kanai, Y.; Yamada, M.; Oyama, T.; Takeyoshi, I., ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. British Journal of Cancer 2014, 110 (8), 2030-2039.
3. Luo, Y.; Li, W.; Ling, Z.; Hu, Q.; Fan, Z.; Cheng, B.; Tao, X., ASCT2 overexpression is associated with poor survival of OSCC patients and ASCT2 knockdown inhibited growth of glutamine-addicted OSCC cells. Cancer Medicine 2020, 9 (10), 3489-3499.
4. Bernhardt, S.; Bayerlová, M.; Vetter, M.; Wachter, A.; Mitra, D.; Hanf, V.; Lantzsch, T.; Uleer, C.; Peschel, S.; John, J.; Buchmann, J.; Weigert, E.; Bürrig, K.-F.; Thomssen, C.; Korf, U.; Beissbarth, T.; Wiemann, S.; Kantelhardt, E. J., Proteomic profiling of breast cancer metabolism identifies SHMT2 and ASCT2 as prognostic factors. Breast Cancer Research 2017, 19 (1), 112.
5. Gallagher, F. A.; Kettunen, M. I.; Day, S. E.; Lerche, M.; Brindle, K. M., 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magnetic Resonance in Medicine 2008, 60 (2), 253-257.
6. Cabella, C.; Karlsson, M.; Canapè, C.; Catanzaro, G.; Colombo Serra, S.; Miragoli, L.; Poggi, L.; Uggeri, F.; Venturi, L.; Jensen, P. R.; Lerche, M. H.; Tedoldi, F., In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine. Journal of Magnetic Resonance 2013, 232, 45-52.
7. Foster, A. C.; Farnsworth, J.; Lind, G. E.; Li, Y.-X.; Yang, J.-Y.; Dang, V.; Penjwini, M.; Viswanath, V.; Staubli, U.; Kavanaugh, M. P., D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures. PloS one 2016, 11 (6), e0156551.
8. Chen, J.; Yadav, N. N.; Stait-Gardner, T.; Gupta, A.; Price, W. S.; Zheng, G., Thiol-water proton exchange of glutathione, cysteine, and N-acetylcysteine: Implications for CEST MRI. NMR in Biomedicine 2020, 33 (1), e4188.
9. Cai, K.; Xu, H. N.; Singh, A.; Moon, L.; Haris, M.; Reddy, R.; Li, L. Z., Breast Cancer Redox Heterogeneity Detectable with Chemical Exchange Saturation Transfer (CEST) MRI. Molecular Imaging and Biology 2014, 16 (5), 670-679.
10. Walker-Samuel, S.; Ramasawmy, R.; Torrealdea, F.; Rega, M.; Rajkumar, V.; Johnson, S. P.; Richardson, S.; Gonçalves, M.; Parkes, H. G.; Årstad, E.; Thomas, D. L.; Pedley, R. B.; Lythgoe, M. F.; Golay, X., In vivo imaging of glucose uptake and metabolism in tumors. Nature Medicine 2013, 19 (8), 1067-1072.
11. Fernandes, J.; Blom, W., The intravenous L-alanine tolerance test as a means for investigating gluconeogenesis. Metabolism - Clinical and Experimental 1974, 23 (12), 1149-1156.
12. Wang, Q.; Hardie, R.-A.; Hoy, A. J.; van Geldermalsen, M.; Gao, D.; Fazli, L.; Sadowski, M. C.; Balaban, S.; Schreuder, M.; Nagarajah, R.; Wong, J. J.-L.; Metierre, C.; Pinello, N.; Otte, N. J.; Lehman, M. L.; Gleave, M.; Nelson, C. C.; Bailey, C. G.; Ritchie, W.; Rasko, J. E.; Holst, J., Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. The Journal of Pathology 2015, 236 (3), 278-289.
13. Cardoso, H. J.; Figueira, M. I.; Vaz, C. V.; Carvalho, T. M. A.; Brás, L. A.; Madureira, P. A.; Oliveira, P. J.; Sardão, V. A.; Socorro, S., Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cellular Oncology 2021, 44 (2), 385-403.
14. Console, L.; Scalise, M.; Tarmakova, Z.; Coe, I. R.; Indiveri, C., N-linked Glycosylation of human SLC1A5 (ASCT2) transporter is critical for trafficking to membrane. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015, 1853 (7), 1636-1645.
15. Mussawy, H.; Viezens, L.; Schroeder, M.; Hettenhausen, S.; Sündermann, J.; Wellbrock, J.; Kossow, K.; Schaefer, C., The bone microenvironment promotes tumor growth and tissue perfusion compared with striated muscle in a preclinical model of prostate cancer in vivo. BMC Cancer 2018, 18 (1), 979.
16. Adeno-Associated Virus 2-Mediated Intratumoral Prostate Cancer Gene Therapy: Long-Term Maspin Expression Efficiently Suppresses Tumor Growth. Human Gene Therapy 2005, 16 (6), 699-710.
17. Li, Y.; Zhong, W.; Zhu, M.; Li, M.; Yang, Z., miR-185 inhibits prostate cancer angiogenesis induced by the nodal/ALK4 pathway. BMC Urology 2020, 20 (1), 49.
18. Kai, L.; Wang, J.; Ivanovic, M.; Chung, Y.-T.; Laskin, W. B.; Schulze-Hoepfner, F.; Mirochnik, Y.; Satcher Jr., R. L.; Levenson, A. S., Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). The Prostate 2011, 71 (3), 268-280.
19. Okudaira, H.; Oka, S.; Ono, M.; Nakanishi, T.; Schuster, D. M.; Kobayashi, M.; Goodman, M. M.; Tamai, I.; Kawai, K.; Shirakami, Y., Accumulation of Trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic Acid in Prostate Cancer due to Androgen-Induced Expression of Amino Acid Transporters. Molecular Imaging and Biology 2014, 16 (6), 756-764.
20. Oka, S.; Okudaira, H.; Yoshida, Y.; Schuster, D. M.; Goodman, M. M.; Shirakami, Y., Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nuclear Medicine and Biology 2012, 39 (1), 109-119.