Keywords: Alzheimer's Disease, Diffusion Tensor Imaging, Repository Data, Cognitive Impairment, Tensor Based Morphometry, Hippocampus
Alzheimer's disease is generally accompanied by brain atrophy, which can be evident on MRI based evaluation at late stages, but there is a need for earlier stage MRI markers that may predict progressive cognitive impairment. Using the NACC Uniform Data Set, a robust pipeline was developed for registering DTI maps to a Human Connectome Project template space and an analysis framework for ROI based, voxel-wise, and morphometric analysis was applied. Prominent results include increased trace in the hippocampus and an increase in ventricle volume in the group with severe cognitive impairment.1. Bergamino, M., Burke, A., Baxter, L. C., Caselli, R. J., Sabbagh, M. N., Talboom, J. S., Huentelman, M. J., & Stokes, A. M. (2022). Longitudinal assessment of Intravoxel incoherent motion diffusion‐weighted mri metrics in cognitive decline. Journal of Magnetic Resonance Imaging. https://doi.org/10.1002/jmri.28172
2. Hanyu, H., Sakurai, H., Iwamoto, T., Takasaki, M., Shindo, H., & Abe, K. (1998). Diffusion-weighted MR imaging of the hippocampus and temporal white matter in alzheimer's disease. Journal of the Neurological Sciences, 156(2), 195–200. https://doi.org/10.1016/s0022-510x(98)00043-4
3. Besser, L., Kukull, W., Knopman, D. S., Chui, H., Galasko, D., Weintraub, S., Jicha, G., Carlsson, C., Burns, J., Quinn, J., Sweet, R. A., Rascovsky, K., Teylan, M., Beekly, D., Thomas, G., Bollenbeck, M., Monsell, S., Mock, C., Zhou, X. H., Thomas, N., … Neuropsychology Work Group, Directors, and Clinical Core leaders of the National Institute on Aging-funded US Alzheimer’s Disease Centers (2018). Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer disease and associated disorders, 32(4), 351–358. https://doi.org/10.1097/WAD.0000000000000279
4. Yeh, F. C., Panesar, S., Fernandes, D., Meola, A., Yoshino, M., Fernandez-Miranda, J. C., ... & Verstynen, T. (2018). Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage, 178, 57-68. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29758339
5. Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3), 2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025
6. Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical image analysis, 12(1), 26–41. https://doi.org/10.1016/j.media.2007.06.004
7. C. Pierpaoli, L. Walker, M. O. Irfanoglu, A. Barnett, P. Basser, L-C. Chang, C. Koay, S. Pajevic, G. Rohde, J. Sarlls, and M. Wu, 2010, TORTOISE: an integrated software package for processing of diffusion MRI data, ISMRM 18th annual meeting, Stockholm, Sweden, abstract #1597
8. Mustafa Okan Irfanoglu, Amritha Nayak, Jeffrey Jenkins, and Carlo Pierpaoli, TORTOISEv3: Improvements and New Features of the NIH Diffusion MRI Processing Pipeline, ISMRM 25th annual meeting, Honolulu, HI, abstract #3540
9. S.M. Smith. Fast robust automated brain extraction. Human Brain Mapping, 17(3):143-155, November 2002.
10. Irfanoglu, M. O., Nayak, A., Jenkins, J., Hutchinson, E. B., Sadeghi, N., Thomas, C. P., & Pierpaoli, C. (2016). DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures. NeuroImage, 132, 439–454. https://doi.org/10.1016/j.neuroimage.2016.02.066
11. M.W. Woolrich, S. Jbabdi, B. Patenaude, M. Chappell, S. Makni, T. Behrens, C. Beckmann, M. Jenkinson, S.M. Smith. Bayesian analysis of neuroimaging data in FSL. NeuroImage, 45:S173-86, 2009
12. S.M. Smith, M. Jenkinson, M.W. Woolrich, C.F. Beckmann, T.E.J. Behrens, H. Johansen-Berg, P.R. Bannister, M. De Luca, I. Drobnjak, D.E. Flitney, R. Niazy, J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J.M. Brady, and P.M. Matthews. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(S1):208-19, 2004
13. M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, S.M. Smith. FSL. NeuroImage, 62:782-90, 2012
14. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. NeuroImage, 2014;92:381-397.