Keywords: Machine Learning/Artificial Intelligence, Data Processing, Image Registration
In this research we investigated the performance of published neural networks for an affine registration of multimodal medical images and examined the networks' generalizability to new datasets. The neural networks were trained and evaluated using a synthetic multimodal dataset of three-dimensional CT and MRI volumes of the liver. We compared the Normalised Mutual Information, Dice coefficient and the Hausdorff distance across the neural networks described in the papers, using our CNN as a benchmark and the conventional affine registration method as a baseline. Seven networks improved the pre-registration Dice coefficient and are therefore able to generalise to new datasets.
This research project is part of the Research Campus M2OLIE and funded by the German Federal Ministry of Education and Research (BMBF) within the Framework "Forschungscampus: public-private partnership for Innovations" under the funding code 13GW0388A.
This project was supported by the German Federal Ministry of Education and Research (BMBF) under the funding code 01KU2102, under the frame of ERA PerMed.
1. Qiu, H., Katz, A.W., Milano, M.T., 2016. Oligometastases to the liver: predicting outcomes based upon radiation sensitivity. J Thorac Dis (10):E1384-E1386. doi:10.21037/jtd.2016.10.88.
2. Ruers, T., Van Coevorden, F., Punt, C., Pierie, J., Borel-Rinkes, I., Ledermann, J., Poston, G., Bechstein, W., Lentz, M., Mauer, M., Folprecht, G., Van Cutsem, E., Ducreux, M., Nordlinger, B., 2017. Local treatment of unresectable colorectal liver metastases: Results of a randomized phase II trial. J Natl Cancer Inst 109(9):djx015. doi:10.1093/jnci/djx015.
3. Bauer, D.F., Russ, T., Waldkirch, B.I., Tönnes, C., Segars, W.P., Schad, L.R., Zöllner, F.G., Golla, A.K., 2021. Generation of annotated multi-modal ground truth datasets for abdominal medical image registration. International Journal of Computer Assisted Radiology and Surgery 16, 1277–1285. doi:10.1007/s11548-021-02372-7.
4. Segars, W., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B., 2010. 4d xcat phantom for multimodality imaging research. Medical physics 37, 4902–15. doi:10.1118/1.3480985.
5. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y., 2021a. Transmorph: Transformer for unsupervised medical image registration. doi:10.48550/ARXIV.2111.10480.
6. Mok, T.C.W., Chung, A.C.S., 2022. Affine medical image registration with coarse-to-fine vision transformer. doi:10.48550/ARXIV.2203.15216.
7. Hasenstab, K.A., Cunha, G.M., Higaki, A., Ichikawa, S., Wang, K., Delgado, T., Brunsing, R.L., Schlein, A., Bittencourt, L.K., Schwartzman, A., Fowler, K.J., Hsiao, A., Sirlin, C.B., 2019. Fully automated convolutional neural network-based affine algorithm improves liver registration and lesion co-localization on hepatobiliary phase t1-weighted mr images. Eur Radiol Exp. 3(1):43. doi:10.1186/s41747-019-0120-7.
8. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V., 2019. VoxelMorph: A learning framework for deformable medical image registration. IEEE Transactions on Medical Imaging 38, 1788–1800. doi:10.1109/tmi.2019.2897538.
9. Hu, Y., Modat, M., Gibson, E., Li, W., Ghavami, N., Bonmati, E., Wang, E., Bandula, S., Moore, C.M., Emberton, M., Ourselin, S., Noble, J.A., Barratt, D.C., Vercauteren, T., 2018. Weakly-supervised convolutional neural networks for multimodal image registration. Medical Image Analysis 49, 1–13. doi:10.1016/j.media.2018.07.002.
10. Gu, D., Liu, G., Tian, J., Zhan, Q., 2019. Two-stage unsupervised learning method for affine and deformable medical image registration, in: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1332–1336. doi:10.1109/ICIP.2019.8803794.
11. Shen, Z., Han, X., Xu, Z., Niethammer, M., 2019. Networks for joint affine and non-parametric image registration. doi:10.48550/ARXIV.1903.08811.
12. Zhao, S., Lau, T., Luo, J., Chang, E.I.C., Xu, Y., 2020. Unsupervised 3d end-to-end medical image registration with volume tweening network. IEEE Journal of Biomedical and Health Informatics 24, 1394–1404.doi:10.1109/jbhi.2019.2951024.
13. Luo, G., Chen, X., Shi, F., Peng, Y., Xiang, D., Chen, Q., Xu, X., Zhu, W., Fan, Y., 2020. Multimodal affine registration for icga and mcsl fundus images of high myopia. Biomedical Optics Express 11. doi:10.1364/BOE.393178.
14. Tang, K., Li, Z., Tian, L., Wang, L., Zhu, Y., 2020. Admir–affine and deformable medical image registration for drug-addicted brain images. IEEE Access 8, 70960–70968. doi:10.1109/ACCESS.2020.2986829.
15. Zeng, Q., Fu, Y., Tian, Z., Lei, Y., Zhang, Y., Wang, T., Mao, H., Liu, T., Curran, W., Jani, A., Patel, P., Yang, X., 2020. Label-driven mri-us registration using weakly-supervised learning for mri-guided prostate radiotherapy. Physics in Medicine & Biology 65. doi:10.1088/1361-6560/ab8cd6.
16. Chen, X., Meng, Y., Zhao, Y., Williams, R., Vallabhaneni, S.R., Zheng, Y.,2021b. Learning Unsupervised Parameter-Specific Affine Transformation for Medical Images Registration. pp. 24–34. doi:10.1007/978-3-030-87202-1 3.
17. Gao, X., Van Houtte, J., Chen, Z., Zheng, G., 2021. Deepasdm: a deep learning framework for affine and deformable image registration incorporating a statistical deformation model, in: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 1–4.doi:10.1109/BHI50953.2021.9508553.
18. Roelofs, T.J.T., 2021. Deep Learning-Based Affine and Deformable 3D Medical Image Registration. Master’s thesis. Aalto University. Espoo, Finnland.
19. Shao, W., Banh, L., Kunder, C.A., Fan, R.E., Soerensen, S.J.C., Wang, J.B., Teslovich, N.C., Madhuripan, N., Jawahar, A., Ghanouni, P., Brooks, J.D., Sonn, G.A., Rusu, M., 2020. Prosregnet: A deep learning framework for registration of mri and histopathology images of the prostate. doi:10.48550/ARXIV.2012.00991.
20. Zhu, Z., Cao, Y., Chenchen, Q., Rao, Y., Di, L., Dou, Q., Ni, D., Wang, Y., 2020. Joint affine and deformable 3d networks for brain mri registration. Medical Physics 48. doi:10.1002/mp.14674.
21. Chee, E., Wu, Z., 2018. Airnet: Self-supervised affine registration for 3d medical images using neural networks. doi:10.48550/ARXIV.1810.02583.
22. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I., 2019. A deep learning framework for unsupervised affine and deformable image registration. Medical Image Analysis 52, 128–143. doi:10.1016/j.media.2018.11.010.
23. de Silva, T., Chew, E.Y., Hotaling, N., Cukras, C.A., 2020. Deep-learning based multi-modal retinal image registration for longitudinal analysis of patients with age-related macular degeneration. Biomedical Optics Express 12. doi:10.1364/BOE.408573.
24. Venkata, S.P., Duffy, B.A., Datta, K., 2022. An unsupervised deep learning method for affine registration of multi-contrast brain mr images.
25. Waldkirch, B.I., 2020. Methods for three-dimensional Registration of Multimodal Abdominal Image Data. Ph.D. thesis. Ruprecht Karl University of Heidelberg.
Figure 2: Architecture of the benchmark CNN for affine registration. A Resnet18 encoder and a U-Net-like decoder with one convolution per layer without skip connections. The decoder consists of six three-dimensional convolutions with a kernel size of 3x3x3, a stride of 1 and padding same. Global Average Pooling then is applied to generate the 12 parameters needed for a three-dimensional affine transformation.
Table 1: The Normalized Mutual Information (NMI), Dice coefficient and Hausdorff distance (HD) results (mean ± SD) on our synthetic dataset for the implemented networks, the benchmark (our CNN) and the baseline (SimpleElastix affine). NMI: higher value is better (maximum is 1), Dice coefficient: higher value is better (maximum is 100%), Hausdorff distance: lower value is better (minimum is 0).
Figure 3: Example results of an affine registration of two volumes from the synthetic dataset. The images show central slices of the axial plane. The fixed images, moving images and result (moved) images are overlaid by the liver segmentations (column 1 - 3). The resulting composites for image and segmentation show the fixed data in blue and the moving/moved data in red. The second row illustrates an example of a poor registration result. Row three and four represent good registration results.