Keywords: New Trajectories & Spatial Encoding Methods, Non-Proton
Modern sodium MRI (23Na-MRI) uses efficient, non-Cartesian k-space sampling strategies to acquire 3D volumes in clinically feasible scan times. 3D Seiffert spirals are a novel k-space sampling scheme with improved efficiency to existing methods. 23Na-MRI, and particularly temporally resolved functional 23Na-MRI, could be an ideal application for Seiffert spirals. We present initial, in silico simulations of 3D Seiffert spiral k-space sampling for a highly undersampled 1.8 second functional 23Na-MRI protocol. Seiffert spirals generate images of improved quality and SNR in direct comparison to 3D-cones. Essential further work will involve compressed sensing reconstruction, further trajectory optimisation and in vivo imaging.
SR: EPSRC-funded UCL Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health) (EP/S021930/1) and the Department of Health’s NIHR-funded Biomedical Research Centre at University College London Hospitals.
CAMGWK: Horizon2020 (Human Brain Project SGA3, Specific Grant Agreement No. 945539), BRC (#BRC704/CAP/CGW), MRC (#MR/S026088/1), Ataxia UK, MS Society (#77), Wings for Life (#169111). CGWK is a shareholder in Queen Square Analytics Ltd.
BSS: Wings for Life (#169111).
[1] K. R. Thulborn, "Quantitative sodium MR imaging: A review of its evolving role in medicine," NeuroImage, vol. 168, pp. 250-268, 2018.
[2] G. Madelin, J.-S. Lee, R. R. Regatte and A. Jerschow, "Sodium MRI: Methods and applications," Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 79, pp. 14-47, 2014.
[3] M. Bydder, W. Zaaraoui, B. Ridley, M. Soubrier, M. Bertinetti, S. Confort-Gouny, L. Schad, M. Guye and J.-P. Ranjeva, "Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function," NeuroImage, vol. 184, p. 771–780, January 2019.
[4] C. A. M. G. Wheeler-Kingshott, F. Riemer, F. Palesi, A. Ricciardi, G. Castellazzi, X. Golay, F. Prados, B. Solanky and E. U. D'Angelo, "Challenges and Perspectives of Quantitative Functional Sodium Imaging (fNaI)," Frontiers in Neuroscience, vol. 12, November 2018.
[5] A. Zylbertal, Y. Yarom and S. Wagner, "The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study," Frontiers in Computational Neuroscience, vol. 11, September 2017.
[6] W. D. Rooney and C. S. Springer, "A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems," NMR in Biomedicine, vol. 4, p. 209–226, October 1991.
[7] F. J. Kratzer, S. Flassbeck, S. Schmitter, T. Wilferth, A. W. Magill, B. R. Knowles, T. Platt, P. Bachert, M. E. Ladd and A. M. Nagel, "3D sodium (23Na) magnetic resonance fingerprinting for time-efficient relaxometric mapping," Magnetic Resonance in Medicine, vol. 86, p. 2412–2425, June 2021.
[8] S. Konstandin and A. M. Nagel, "Measurement techniques for magnetic resonance imaging of fast relaxing nuclei," Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 27, p. 5–19, July 2013.
[9] A. M. Nagel, F. B. Laun, M.-A. Weber, C. Matthies, W. Semmler and L. R. Schad, "Sodium MRI using a density-adapted 3D radial acquisition technique," Magnetic Resonance in Medicine, vol. 62, p. 1565–1573, October 2009.
[10] S. Nielles-Vallespin, M.-A. Weber, M. Bock, A. Bongers, P. Speier, S. E. Combs, J. Wöhrle, F. Lehmann-Horn, M. Essig and L. R. Schad, "3D radial projection technique with ultrashort echo times for sodium MRI: Clinical applications in human brain and skeletal muscle," Magnetic Resonance in Medicine, vol. 57, p. 74–81, 2006.
[11] J. G. Pipe, N. R. Zwart, E. A. Aboussouan, R. K. Robison, A. Devaraj and K. O. Johnson, "A new design and rationale for 3D orthogonally oversampled k-space trajectories," Magnetic Resonance in Medicine, vol. 66, p. 1303–1311, April 2011.
[12] F. E. Boada, J. S. Gillen, G. X. Shen, S. Y. Chang and K. R. Thulborn, "Fast three dimensional sodium imaging," Magnetic Resonance in Medicine, vol. 37, pp. 706-715, 1997.
[13] P. T. Gurney, B. A. Hargreaves and D. G. Nishimura, "Design and analysis of a practical 3D cones trajectory," Magnetic Resonance in Medicine, vol. 55, pp. 575-582, 2006.
[14] F. Riemer, B. S. Solanky, C. Stehning, M. Clemence, C. A. M. Wheeler-Kingshott and X. Golay, "Sodium (23Na) ultra-short echo time imaging in the human brain using a 3D-Cones trajectory," Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 27, p. 35–46, 01 February 2014.
[15] M. Lustig, D. Donoho and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, vol. 58, p. 1182–1195, 2007.
[16] T. Speidel, P. Metze and V. Rasche, "Efficient 3D Low-Discrepancy k-Space Sampling Using Highly Adaptable Seiffert Spirals," IEEE Transactions on Medical Imaging, vol. 38, p. 1833–1840, August 2019.
[17] C. R. Wyatt and A. R. Guimaraes, "3D MR fingerprinting using Seiffert spirals," Magnetic Resonance in Medicine, vol. 88, p. 151–163, March 2022.
[18] R. B. Olin, T. Speidel, J. D. Sanchez, E. S. Hansen, C. Laustsen, L. G. Hanson, V. Rasche and J. H. Ardenkjær-Larsen, "Seiffert spirals for hyperpolarized 13C MRI with efficient k-space sampling and flexible acceleration," 2022.
[19] P. Erdös, "Spiraling the Earth with C. G. J. Jacobi," American Journal of Physics, vol. 68, p. 888–895, October 2000.
[20] M. Lustig, S.-J. Kim and J. M. Pauly, "A fast method for designing time-optimal gradient waveforms for arbitrary k-space trajectories," IEEE Transactions on Medical Imaging, vol. 27, p. 866–873, June 2008.
[21] J.-R. Liao, J. M. Pauly, T. J. Brosnan and N. J. Pelc, "Reduction of motion artifacts in cine MRI using variable-density spiral trajectories," Magnetic Resonance in Medicine, vol. 37, p. 569–575, April 1997.
[22] R. Stobbe and C. Beaulieu, "Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human brain," Magnetic Resonance in Medicine, vol. 60, p. 981–986, October 2008.
[23] A. H. Barnett, J. Magland and L. af Klinteberg, "A Parallel Nonuniform Fast Fourier Transform Library Based on an Exponential of Semicircle Kernel," SIAM Journal on Scientific Computing, vol. 41, p. C479–C504, January 2019.
[24] N. R. Zwart, K. O. Johnson and J. G. Pipe, "Efficient sample density estimation by combining gridding and an optimized kernel," Magnetic Resonance in Medicine, vol. 67, p. 701–710, June 2011.
[25] A. Coste, F. Boumezbeur, A. Vignaud, G. Madelin, K. Reetz, D. L. Bihan, C. Rabrait-Lerman and S. Romanzetti, "Tissue sodium concentration and sodium T1 mapping of the human brain at 3 T using a Variable Flip Angle method," Magnetic Resonance Imaging, vol. 58, p. 116–124, May 2019.