Keywords: Alzheimer's Disease, Alzheimer's Disease
This work explores the link between the topological properties of brain structural networks and APOE-epsilon4 in young asymptomatic adults. We investigated the sensorimotor, visual and default-mode networks. We found evidence that there are differences in the mean clustering coefficient of the sensorimotor network of carriers versus non-carriers, with the left caudal middle frontal, left precentral, right postcentral and right precentral gyri driving the differences. Interestingly, the mean clustering coefficient was higher in carriers compared to non-carriers. In contrast, no differences were found for the visual or the default-mode networks.1. B.W. Kunkle, B. Grenier-Boley, R. Sims, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Ab, tau, immunity and lipid processing. Nat Genet 2019, 51(3): 414-430.
2. W. J. Strittmatter, A. M. Saunders, D. Schmechel, M. Pericak-Vance, J. Enghild, G. S. Salvesen, A. D. Roses. “Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.” PNAS, 1993, 90(5):1977-1981.
3. A. M. Saunders, W. J. Strittmatter, D. Schmechel, P. H. St. George-Hyslop, M. A. Pericak-Vance, S. H. Joo, B. L. Rosi, J. F. Gusella, D. R. Crapper-MacLachlan, M. J. Alberts, C. Hulette, B. Crain, D. Goldgaber, A. D. Roses. “Association of apolipoprotein E allele epsilon4 with late-onset familial and sporadic Alzheimer’s disease.” Neurology, 1993, 43(8) 1467.
4. J.C. Lambert, C.A. Ibrahim-Verbaas, D. Harold et al. “Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease.” Nat Genet, 2013, 45(12):1452-1458.
5. J.T. Yu, L. Tan, J. Hardy. Apolipoprotein E in Alzheimer’s disease: an update.” Annu Rev Neurosci, 2014, 37:79-100.
6. L.A. Farrer, L.A. Cupples, J. L. Haines, B. Hyman, W.A. Kukull, R. Mayeux, R.H. Myers, M.A. Pericak-Vance, N. Risch, C.M. van Duijn. “Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer’s disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium.” JAMA, 1997, 278(16):1349-1356.
7. F. Palesi, G. Castellazzi, L. Casiraghi, E. Sinforiani, P. Vitali, C. A. M. Wheeler-Kingshot, E. D’Angelo. “Exploring patterns of alteration in Alzheimer’s Disease brain networks: a combined structural and functional connectome analysis.” Frontiers in Neuroscience, 2016, doi.org/10.3389/fnins.2016.00380
8. Z. Dai, Q. Lin, T. Li, X. Wang, H, Yuan, X. Yu, Y. He, H. Wang. “Disrupted structural and functional brain networks in Alzheimer's disease.” Neurobiol Aging, 2019, 75:71–82.
9. A.P. Badhwar, A. Tam, C. Dansereau, P. Orban, F. Hoffstaedter, P. Bellec. “Resting-state network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis.” Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 8, 73–85.
10. A. Mohan, A.J. Roberto, A. Mohan, A. Lorenzo, K. Jones, M.J. Carney, L. Liogier-Weyback, S. Hwang, K.A.B. Lapidus. “The Significance of the Default Mode Network (DMN) in Neurological and Neuropsychiatric Disorders: A Review.” Yale J Biol Med, 2016, 89(1):49– 57.
11. C.-C. Huang, W.-M. Huang, C.-H. Chen, Z.-Y. Jhou, The Alzheimer's Disease Neuroimaging Initiative, and C.-p. Lin. The combination of functional and structural MRI is a potential screening tool in Alzheimer's disease. (2018) Frontiers in Aging Neuroscience, doi.org/10.3389/fnagi.2018.00251.
12. Y. Deng, L. Shi, Y. Li, D. Wang, Alzheimer’s Neuroimaging Initiative. “Altered topological organization of high-level visual networks in Alzheimer’s disease and mild cognitive impairment patients.” Neuroscience Letters. 2016, 630:147-153.
13. Z. Wang, K. Qiao, G. Chen, D. Sui, H.-M. Dong, Y.-S. Wang, H.-J. Li, J. Lu, X.-N. Zuo, Y. Han. “Functional connectivity changes across the spectrum of subjective cognitive decline, amnestic mild cognitive impairment and Alzheimer’s disease.” Front Neuroinform, 2019. Doi: https://doi.org/10.3389/fninf.2019.00026.
14. Q. Wen, S. M. Mustafi, J. Li, S. L. Risacher, E. Tallman, S. A. Brown, J. D. West, J. Harezlak, M. R. Farlow, F. W. Unverzagt, S. Gao, L. G. Apostolova, A. J. Saykin, Y.-C. Wu, White matter alterations in early-stage Alzheimer's disease: A tract-specific study. (2019) Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 11:576-587.
15. Q. Wang, Y. Wang, J. Liu, C. L. Sutphen, C. Cruchaga, T. Blazey, B. A. Gordon, Y. Su, C. Chen, J. S. Shimony, B. M. Ances, N. J. Cairns, A. M. Fagan, J. C. Morris, T. L.S. Benzinger, Quantification of white matter cellularity and damage in preclinical and early symptomatic Alzheimer's disease. (2019) NeuroImage: Clinical, 22:101767.
16. Y. Chen, H. An, H. Zhu, T. Stone, J. K. Smith, C. Hall, E. Bullitt, D. Shen, W. Lin. White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. (2009) NeuroImage, 47:1154–1162
17. M. D. Cykowski, P. T. Fox, R. J. Ingham, J. C. Ingham, D. A. Robin. A study of the reproducibility and etiology of diffusion anisotropy differences in developmental stuttering: a potential role for impaired myelination. (2010) NeuroImage, 52:1495–1504.
18. D. K. Jones, T. R. Knösche and R. Turner. White matter integrity, fiber count and other fallacies: the do’s and dont’s of diffusion MRI. (2013) NeuroImage, 73:239-254.
19. C. C. Chang, C. C. Chow, L. C. Telier, S. Vattikuti, S. M. Purcell, J. J .Lee. Second-generation PLINK: rising to the challenge of larger and richer datasets. (2015) GigaScience 4:7.
20. S. McCarthy, S. Das, W. Kretzschmar, et al., Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 48:1279-1283.
21. P.R. Loh, P. Danecek, P. F. Palamara, et al. Reference-based phasing using the haplotype reference consortium panel. (2016) Nature Genetics, 48:1443-1448.
22. S. Das, L. Forer, S. Schonherr, et al. Next-generation genotype imputation service and methods. (2016) Nature Genetics, 48:1248-1287.
23. J. J .Corneveaux, A. J. Myers, A. N. Allen, et al. Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterised and neuropathologically verified individuals. (2010) Human Molecular Genetics, 19:3295-3301.
24. L. Koelewijn, T. M. Lancaster, D. Linden, D. C. Dima, B. C. Routley, L. Magazzini, K. Barawi, L. Brindley, R. Adams, K. E. Tansey, A. Bompas, A. Tales, A. Bayer, K. D. Singh. Oscillatory hyperactivity and hyperconnectivity in young APOE-e4 carriers and hypoconnectivity in Alzheimer's disease. (2019) eLife, 8:e36011.
25. J.-D. Tournier, R. E. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens, B. Jeurissen, C.-H. Yeh, A. Connelly. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. (2019) NeuroImage, 202:116-37.
26. J.-D. Tournier, F. Calamante, A. Connelly. Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. (2010) Proceedings of the International Society for Magnetic Resonance in Medicine, 1670.
27. R. E. Smith, J.-D. Tournier, F. Calamante, A. Connelly. Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information. (2012) NeuroImage, 62:1924-1938.
28. R. E. Smith, J.-D. Tournier, F. Calamante, A. Connelly. SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. (2015) NeuroImage, 119, 338-351
29. R. S. Desikan, F. Segonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L. Buckner, A. M. Dale, R. P. Maquire, B. T. Hyman, M. S. Albert, R. J. Killiany. (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage (31): 968-980.
30. M. Rubinov and O. Sporns. Complex network measures of brain connectivity: uses and interpretations. (2010) NeuroImage. 52(3): 1059-1069.
31. Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. (2001) The Annals of Statistics, 29(4): 1165-1188.
32. C. Fennema-Notestine, M. S. Panizzon, W. R. Thompson, C. H. Chen, L. T. Eyler, B. Fischl, C. E. Franz, M. D. Grant, A. J. Jak, T. L. Jernigan, M. J. Lyons, M. C. Neale, L. J. Seidman, M.T. Tsuang, H. Xian, A. M. Dale, W. S. Kremen. Presence of ApoE ε4 allele associated with thinner frontal cortex in middle age. (2011) J Alzheimers Dis. 26(Suppl 3):49-60.