Keywords: CEST & MT, Alzheimer's Disease
This study utilizes nuclear Overhauser effect (NOE) MRI to map early-stage changes in macromolecular brain content of an APPNL-F model of Alzheimer's disease. NOEMTR and rNOE are the quantitative metrics used to assess lipids and proteins in major regions of the mouse brain. Following ROI analysis, there is a statistically significant decrease in NOEMTR contrast between wild-type and AD mice in the hippocampus, with rNOE showing a similar trend with a strong suggestion of statistical significance. Overall, this study shows that NOE MRI can be used to successfully detect changes in the macromolecular content of mouse brain tissue through NOEMTR.“Research reported in this publication was supportedby the National Institute of Biomedical Imaging andBioengineering of the National Institutes of Healthunder award Number P41EB029460.”
“Research reported in this publication was supportedby the National Institute of Aging of the NationalInstitutes of Health under Award NumberR01AG063869.”
1. Alzheimer, Association, sciencestaff, & alzorg. (2019). 2019 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 15(3), 321–387. https://doi.org/10.1016/J.JALZ.2019.01.010
2. Vemuri, P., & Jack, C. R. (2010). Role of structural MRI in Alzheimer’s disease. Alzheimer’s Research and Therapy, 2(4), 1–10. https://doi.org/10.1186/ALZRT47/TABLES/3
3. Tondelli, M., Wilcock, G. K., Nichelli, P., de Jager, C. A., Jenkinson, M., & Zamboni, G. (2012). Structural MRI changes detectable up to ten years before clinical Alzheimer’s disease. Neurobiology of Aging, 33(4), 825.e25-825.e36. https://doi.org/10.1016/J.NEUROBIOLAGING.2011.05.018
4. Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D. P., Rueckert, D., Soininen, H., & Lötjönen, J. (2011). Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer’s Disease. PLOS ONE, 6(10), e25446. https://doi.org/10.1371/JOURNAL.PONE.0025446
5. Bron, E. E., Klein, S., Papma, J. M., Jiskoot, L. C., Venkatraghavan, V., Linders, J., Aalten, P., de Deyn, P. P., Biessels, G. J., Claassen, J. A. H. R., Middelkoop, H. A. M., Smits, M., Niessen, W. J., van Swieten, J. C., van der Flier, W. M., Ramakers, I. H. G. B., & van der Lugt, A. (2021). Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease. NeuroImage: Clinical, 31, 102712. https://doi.org/10.1016/J.NICL.2021.102712
6. Diogo, V. S., Ferreira, H. A., & Prata, D. (2022). Early diagnosis of Alzheimer’s disease using machine learning: a multi-diagnostic, generalizable approach. Alzheimer’s Research and Therapy, 14(1), 1–21. https://doi.org/10.1186/S13195-022-01047-Y/FIGURES/4
7. Wu, B., Warnock, G., Zaiss, M., Lin, C., Chen, M., Zhou, Z., Mu, L., Nanz, D., Tuura, R., & Delso, G. (2016). An overview of CEST MRI for non-MR physicists. EJNMMI Physics, 3(1), 1–21. https://doi.org/10.1186/S40658-016-0155-2/TABLES/2
8. Jones, K. M., Pollard, A. C., Pagel, M. D., Pagel, M., Jones, K., & Pollard, A. (2018). Clinical applications of chemical exchange saturation transfer (CEST) MRI. Journal of Magnetic Resonance Imaging, 47(1), 11–27. https://doi.org/10.1002/JMRI.25838
9. Zhou, Y., Bie, C., van Zijl, P. C. M., & Yadav, N. N. (2022). The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI. NMR in Biomedicine, e4778. https://doi.org/10.1002/NBM.4778
10. Kim, M., Gillen, J., Landman, B. A., Zhou, J., & van Zijl, P. C. M. (2009). WAter Saturation Shift Referencing (WASSR) for chemical exchange saturation transfer experiments. Magnetic Resonance in Medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 61(6), 1441. https://doi.org/10.1002/MRM.21873
11. Zaiss, M., Schmitt, B., & Bachert, P. (2011). Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. Journal of Magnetic Resonance (San Diego, Calif. : 1997), 211(2), 149–155. https://doi.org/10.1016/J.JMR.2011.05.001
12. Díaz, M., Fabelo, N., Casañas-Sánchez, V., Marin, R., Gómez, T., Quinto-Alemany, D., & Pérez, J. A. (2016). Hippocampal Lipid Homeostasis in APP/PS1 Mice is Modulated by a Complex Interplay Between Dietary DHA and Estrogens: Relevance for Alzheimer’s Disease. Journal of Alzheimer’s Disease, 49(2), 459–481. https://doi.org/10.3233/JAD-150470
13. Chen, L., Wei, Z., Chan, K. W. Y., Cai, S., Liu, G., Lu, H., Wong, P. C., van Zijl, P. C. M., Li, T., & Xu, J. (2019). Protein aggregation linked to Alzheimer’s disease revealed by saturation transfer MRI. NeuroImage, 188, 380–390. https://doi.org/10.1016/J.NEUROIMAGE.2018.12.018
14. Nilsson, P., Saito, T., & Saido, T. C. (2014). New mouse model of Alzheimer’s. ACS Chemical Neuroscience, 5(7), 499–502. https://doi.org/10.1021/CN500105P/ASSET/IMAGES/LARGE/CN-2014-00105P_0002.JPEG