Keywords: Data Processing, Pediatric, Neuro
High-resolution infant diffusion MRI (dMRI) data poses specific challenges such as severe motion artifacts, long acquisition time for multi-shell data, and low signal-to-noise (SNR). We present a robust image analysis pipeline for high fidelity kurtosis and tensor fitting of 1.2mm isotropic infant brain dMRI that allows us to efficiently analyze in-vivo dMRI data despite the considerable technical challenges specific to infant imaging. State-of-the-art preprocessing including slice-to-volume motion correction and susceptibility-by-movement correction is combined with advanced self-supervised learning-based denoising to produce high fidelity diffusion tensor and diffusion kurtosis fitting.1. Ouyang, M., Dubois, J., Yu, Q., Mukherjee, P., & Huang, H. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. 2019; Neuroimage, 185, 836-850.
2. Bastiani, M., Andersson, J. L., Cordero-Grande, L., Murgasova, M., Hutter, J., Price, A. N., ... & Sotiropoulos, S. N. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. 2019; Neuroimage, 185, 750-763.
3. Makropoulos, A., Robinson, E. C., Schuh, A., Wright, R., Fitzgibbon, S., Bozek, J., ... & Rueckert, D. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. 2018; Neuroimage, 173, 88-112.
4. Harms, M. P., Somerville, L. H., Ances, B. M., Andersson, J., Barch, D. M., Bastiani, M., ... & Yacoub, E. Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. 2018; Neuroimage, 183, 972-984.
5. Andersson, J. L. & Sotiropoulos, S. N. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes. 2015; Neuroimage 122, 166-176
6. Andersson, J. L. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging.2016; Neuroimage 125, 1063-1078
7. Andersson, J. L., Graham, M. S., Zsoldos, E. & Sotiropoulos, S. N. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images.2016; Neuroimage 141, 556-572
8. Andersson, J. L., Graham, M. S., Drobnjak, I., Zhang, H., Filippini, N., & Bastiani, M. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement. 2017; Neuroimage, 152, 450-466.
9. Andersson, J. L., Graham, M. S., Drobnjak, I., Zhang, H., & Campbell, J. Susceptibility-induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data.2018; Neuroimage, 171, 277-295.
10. Fadnavis, S., Batson, J., & Garyfallidis, E. Patch2Self: Denoising Diffusion MRI with Self-Supervised Learning. 2020; Advances in Neural Information Processing Systems, 33, 16293-16303.
11. Jiang, H., Van Zijl, P. C., Kim, J., Pearlson, G. D., & Mori, S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. 2006; Computer methods and programs in biomedicine, 81(2), 106-116.
12. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., ... & Dipy Contributors. Dipy, a library for the analysis of diffusion MRI data. 2014; Frontiers in neuroinformatics, 8