Keywords: Image Reconstruction, Artifacts, Deep Learning, Compressed Sensing , Parallel MRI
Most deep learning methods apply U-Net either in image or k-space domain. Nevertheless, these methods have limitations: (1) Directly applying U-Net in k-space domain is not optimal for extracting features; (2) conventional image-domain oriented U-Net does not fully utilize the information of encoder part of the network for extracting features in the decoder part. In this paper, a dual-domain deep learning-based approach is presented, incorporating multi-coil data consistency layers for the reconstruction of cardiac MR images from 1-D Variable Density (VD) under-sampled data. Experiments show superior reconstruction results of the proposed method than conventional Compressed Sensing (CS) method.1. Hyun, C. M., Kim, H. P., Lee, S. M., Lee, S., & Seo, J. K. (2018). Deep learning for undersampled MRI reconstruction. Physics in Medicine & Biology, 63(13), 135007.
2. Knoll, F., Hammernik, K., Zhang, C., Moeller, S., Pock, T., Sodickson, D. K., & Akcakaya, M. (2020). Deep-learning methods for parallel magnetic resonance imaging reconstruction: A survey of the current approaches, trends, and issues. IEEE signal processing magazine, 37(1), 128-140.
3. Souza, R., Bento, M., Nogovitsyn, N., Chung, K. J., Loos, W., Lebel, R. M., & Frayne, R. (2020). Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction. Magnetic resonance imaging, 71, 140-153.
4. H. Jung, K. Sung, K. S. Nayak, E. Y. Kim, and J. C. Ye, “k-t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI,” Magn. Reson. Med., vol. 61, no. 1, pp. 103–116, Jan. 2009, doi: 10.1002/mrm.21757.
5. Feng, L., Srichai, M. B., Lim, R. P., Harrison, A., King, W., Adluru, G., ... & Kim, D. (2013). Highly accelerated real‐time cardiac cine MRI using k–t SPARSE‐SENSE. Magnetic resonance in medicine, 70(1), 64-74.
6. Andreopoulos, A., & Tsotsos, J. K. (2008). Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Medical image analysis, 12(3), 335-357.
7. Liu, X., Pang, Y., Jin, R., Liu, Y., & Wang, Z. (2022). Dual-Domain Reconstruction Networks with V-Net and K-Net for fast MRI. arXiv preprint arXiv:2203.05725.
8. Chen, C., Liu, Y., Schniter, P., Tong, M., Zareba, K., Simonetti, O., ... & Ahmad, R. (2020). OCMR (v1. 0)--Open-Access Multi-Coil k-Space Dataset for Cardiovascular Magnetic Resonance Imaging. arXiv preprint arXiv:2008.03410.
9. Walsh, D. O., Gmitro, A. F., & Marcellin, M. W. (2000). Adaptive reconstruction of phased array MR imagery. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 43(5), 682-690.
10. Lustig, M., Donoho, D. L., Santos, J. M., & Pauly, J. M. (2008). Compressed sensing MRI. IEEE signal processing magazine, 25(2), 72-82.