Keywords: CEST & MT, Cancer, Glucose
The transverse relaxation time (T2) of water is affected by the presence of exchangeable protons that are chemically shifted with respect to the water protons. We use direct saturation (DS) MRI to dynamically measure this effect during infusion of D-glucose to assess its uptake in brain tumors. The change in T2 becomes apparent as a line broadening of the DS spectrum, which is acquired using a whole-brain water saturation shift reference (WASSR) acquisition. First results using 0.5g/kg D-glucose show linewidth changes on the order of a few Hertz in glioma patients, allowing separation of tumor tissue from healthy brain tissue.
1. L. Knutsson, X. Xu, P. C. M. van Zijl and K. W. Y. Chan, Imaging of sugar-based contrast agents using
their hydroxyl proton exchange properties. NMR in biomedicine, 2022, e4784
2. D. Paech and A. Radbruch, Dynamic Glucose-Enhanced MR Imaging. Magn Reson Imaging Clin N Am,
2021, 29, 77-81
3. M. Rivlin and G. Navon, Molecular imaging of tumors by chemical exchange saturation transfer MRI of
glucose analogs. Quant Imaging Med Surg, 2019, 9, 1731-1746
4. A. Seidemo, P. M. Lehmann, A. Rydhog, R. Wirestam, G. Helms, Y. Zhang, N. N. Yadav, P. C. Sundgren,
P. C. M. van Zijl and L. Knutsson, Towards robust glucose chemical exchange saturation transfer imaging
in humans at 3 T: Arterial input function measurements and the effects of infusion time. NMR in
Biomedicine, 2022, 35, e4624
5. X. Xu, A. A. Sehgal, N. N. Yadav, J. Laterra, L. Blair, J. Blakeley, A. Seidemo, J. M. Coughlin, M. G.
Pomper, L. Knutsson and P. C. M. van Zijl, d-glucose weighted chemical exchange saturation transfer
(glucoCEST)-based dynamic glucose enhanced (DGE) MRI at 3T: early experience in healthy volunteers
and brain tumor patients. Magn Reson Med, 2020, 84, 247-262
6. X. Xu, N. N. Yadav, L. Knutsson, J. Hua, R. Kalyani, E. Hall, J. Laterra, J. Blakeley, R. Strowd, M.
Pomper, P. Barker, K. Chan, G. Liu, M. T. McMahon, R. D. Stevens and P. C. van Zijl, Dynamic Glucose-
Enhanced (DGE) MRI: Translation to Human Scanning and First Results in Glioma Patients. Tomography,
2015, 1, 105-114
7. K. Herz, T. Lindig, A. Deshmane, J. Schittenhelm, M. Skardelly, B. Bender, U. Ernemann, K. Scheffler
and M. Zaiss, T1ρ-based dynamic glucose-enhanced (DGEρ) MRI at 3 T: method development and early
clinical experience in the human brain. Magn Reson Med, 2019, 82, 1832-1847
8. D. Paech, P. Schuenke, C. Koehler, J. Windschuh, S. Mundiyanapurath, S. Bickelhaupt, D. Bonekamp, P.
Baumer, P. Bachert, M. E. Ladd, M. Bendszus, W. Wick, A. Unterberg, H. P. Schlemmer, M. Zaiss and A.
Radbruch, T1rho-weighted Dynamic Glucose-enhanced MR Imaging in the Human Brain. Radiology,
2017, 285, 914-922
9. P. Schuenke, D. Paech, C. Koehler, J. Windschuh, P. Bachert, M. E. Ladd, H. P. Schlemmer, A. Radbruch
and M. Zaiss, Fast and Quantitative T1rho-weighted Dynamic Glucose Enhanced MRI. Sci Rep, 2017, 7,
42093
10. T. Jin, B. Iordanova, T. K. Hitchens, M. Modo, P. Wang, H. Mehrens and S. G. Kim, Chemical exchange-
sensitive spin-lock (CESL) MRI of glucose and analogs in brain tumors. Magn Reson Med, 2018, 80, 488-
495
11. X. Xu, K. W. Chan, L. Knutsson, D. Artemov, J. Xu, G. Liu, Y. Kato, B. Lal, J. Laterra, M. T. McMahon
and P. C. van Zijl, Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier
break down and increased blood volume in brain cancer. Magn Reson Med, 2015, 74, 1556-1563
12. P. Schuenke, C. Koehler, A. Korzowski, J. Windschuh, P. Bachert, M. E. Ladd, S. Mundiyanapurath, D.
Paech, S. Bickelhaupt, D. Bonekamp, H. P. Schlemmer, A. Radbruch and M. Zaiss, Adiabatically prepared
spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields. Magn Reson Med,
2017, 78, 215-225
13. M. Kim, F. Torrealdea, S. Adeleke, M. Rega, V. Evans, T. Beeston, K. Soteriou, S. Thust, A. Kujawa, S.
Okuchi, E. Isaac, W. Piga, J. R. Lambert, A. Afaq, E. Demetriou, P. Choudhary, K. K. Cheung, S. Naik, D.
Atkinson, S. Punwani and X. Golay, Challenges in glucoCEST MR body imaging at 3 Tesla. Quant
Imaging Med Surg, 2019, 9, 1628-1640
14. M. Zaiss, K. Herz, A. Deshmane, M. Kim, X. Golay, T. Lindig, B. Bender, U. Ernemann and K. Scheffler,
Possible artifacts in dynamic CEST MRI due to motion and field alterations. Journal of magnetic
resonance, 2019, 298, 16-22
15. J. C. Gore, M. S. Brown, C. T. Mizumoto and I. M. Armitage, Influence of glycogen on water proton
relaxation times. Magn Reson Med, 1986, 3, 463-466
16. N. N. Yadav, J. Xu, A. Bar-Shir, Q. Qin, K. W. Chan, K. Grgac, W. Li, M. T. McMahon and P. C. van Zijl,
Natural D-glucose as a biodegradable MRI relaxation agent. Magn Reson Med, 2014, 72, 823-828
17. R. V. Mulkern and M. L. Williams, The general solution to the Bloch equation with constant rf and
relaxation terms: application to saturation and slice selection. Med Phys, 1993, 20, 5-13
18. S. A. Smith, J. W. Bulte and P. C. van Zijl, Direct saturation MRI: theory and application to imaging brain
iron. Magn Reson Med, 2009, 62, 384-393
19. M. Kim, J. Gillen, B. A. Landman, J. Zhou and P. C. van Zijl, Water saturation shift referencing (WASSR)
for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med, 2009, 61, 1441-1450
20. M. Zaiss, A. Anemone, S. Goerke, D. L. Longo, K. Herz, R. Pohmann, S. Aime, M. Rivlin, G. Navon, X.
Golay and K. Scheffler, Quantification of hydroxyl exchange of D-Glucose at physiological conditions for
optimization of glucoCEST MRI at 3, 7 and 9.4 Tesla. NMR in biomedicine, 2019, 32, e4113
Figure 1. Simulated water Z-spectra (WASSR) before (a) and after (b) an increase of 10 mM in D-Glc concentration. Linewidth at baseline (c) and after infusion (d), and linewidth difference (e) show that the effect increases as a function of B1 (µT) and tsat (s).
Figure 2: Clinical images (FLAIR, MPRAGE) and parameter images for DCE (Ve, Ktrans), DSC (corrected CBV and K2 (leakage)) and DS-DGE for a grade IV GBM patient who had previously undergone surgery. Maps of LW and of the AUC of the LW difference based DGE uptake curves are of good quality. Examples of LW fits for tumor and contralateral as well as uptake curves for the LW difference (Δ-LW) are given for the ROIs indicated in red in the small version of the AUC map.
Figure 3: 3T DS-DGE data (35 g D-Glc) for a patient with IDH-mutant astrocytoma and suspected malignant transformation. DS-DGE based on the mean DLW-AUC identifies an enhancing rim with blood-brain barrier (BBB) breakdown, also visible on Ktrans and corrected CBV.