Keywords: White Matter, Neurodegeneration, White Matter Hyperintensity
White matter hyperintensity (WMH) in the brain is known to correlate with cognitive prognosis in many diseases; automated quantification tools for WMH have been developed, but most have been used to quantify study data from specific diseases imaged with a single scanning protocol. The low accuracy of these tools when used for clinical data with diverse scan protocols and diseases has been a problem in clinical applications. To overcome this limitation, we developed a deep-learning-based WMH quantification model for real-world clinical FLAIR images with high heterogeneity. The results show the potential of this method as a clinical tool.1. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.
2. Wardlaw JM, Hernández MCV, Muñoz‐Maniega S. What are White Matter Hyperintensities Made of? Journal of the American Heart Association. 2015;4(6):e001140.
3. Simoes R, Monninghoff C, Dlugaj M, Weimar C, Wanke I, van Walsum AMV, et al. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images. Magn Reson Imaging. 2013;31(7):1182-9.
4. Ji SX, Ye CQ, Li F, Sun W, Zhang J, Huang YN, et al. Automatic segmentation of white matter hyperintensities by an extended FitzHugh & nagumo reaction diffusion model. Journal of Magnetic Resonance Imaging. 2013;37(2):343-50.
5. Yoo BI, Lee JJ, Han JW, Oh SYW, Lee EY, MacFall JR, et al. Application of variable threshold intensity to segmentation for white matter hyperintensities in fluid attenuated inversion recovery magnetic resonance images. Neuroradiology. 2014;56(4):265-81.
6. Jack CR, O'Brien PC, Rettman DW, Shiung MM, Xu YC, Muthupillai R, et al. FLAIR histogram segmentation for measurement of leukoaraiosis volume. Journal of Magnetic Resonance Imaging. 2001;14(6):668-76.
7. Admiraal-Behloul F, van den Heuvel DMJ, Olofsen H, van Osch MJP, van der Grond J, van Buchem MA, et al. Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage. 2005;28(3):607-17.
8. Ong KH, Ramachandram D, Mandava R, Shuaib IL. Automatic white matter lesion segmentation using an adaptive outlier detection method. Magn Reson Imaging. 2012;30(6):807-23.
9. Lao ZQ, Shen DG, Liu DF, Jawad AF, Melhern ER, Launer LJ, et al. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol. 2008;15(3):300-13.
10. Dyrby TB, Rostrup E, Baare WFC, van Straaten ECW, Barkhof F, Vrenken H, et al. Segmentation of age-related white matter changes in a clinical multi-center study. Neuroimage. 2008;41(2):335-45.
11. Seghier ML, Ramlackhansingh A, Crinion J, Leff AP, Price CJ. Lesion identification using unified segmentation-normalisation models and fuzzy clustering. Neuroimage. 2008;41(4):1253-66.
12. Ithapu V, Singh V, Lindner C, Austin BP, Hinrichs C, Carlsson CM, et al. Extracting and Summarizing White Matter Hyperintensities Using Supervised Segmentation Methods in Alzheimer's Disease Risk and Aging Studies. Hum Brain Mapp. 2014;35(8):4219-35.
13. Maldjian JA, Whitlow CT, Saha BN, Kota G, Vandergriff C, Davenport EM, et al. Automated White Matter Total Lesion Volume Segmentation in Diabetes. Am J Neuroradiol. 2013;34(12):2265-70.
14. Yang FG, Shan ZY, Kruggel F. White matter lesion segmentation based on feature joint occurrence probability and chi(2) random field theory from magnetic resonance (MR) images. Pattern Recogn Lett. 2010;31(9):781-90.
15. Van Leemput K, Maes F, Vandermeulen D, Colchester A, Suetens P. Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE transactions on medical imaging. 2001;20(8):677-88.
16. Shi L, Wang DF, Liu SP, Pu YH, Wang YL, Chu WCW, et al. Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction. J Neurosci Meth. 2013;213(1):138-46.
17. Beare R, Srikanth V, Chen J, Phan TG, Stapleton J, Lipshut R, et al. Development and validation of morphological segmentation of age-related cerebral white matter hyperintensities. Neuroimage. 2009;47(1):199-203.
18. Herskovits EH, Bryan RN, Yang F. Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study. Adv Med Sci-Poland. 2008;53(2):182-90.
19. Rachmadi MF, Valdes-Hernandez MDC, Agan MLF, Di Perri C, Komura T, Alzheimer's Disease Neuroimaging I. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology. Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society. 2018;66:28-43.
20. Ding T, Cohen AD, O'Connor EE, Karim HT, Crainiceanu A, Muschelli J, et al. An improved algorithm of white matter hyperintensity detection in elderly adults. NeuroImage Clinical. 2020;25:102151.
21. Moeskops P, de Bresser J, Kuijf HJ, Mendrik AM, Biessels GJ, Pluim JPW, et al. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI. NeuroImage Clinical. 2018;17:251-62.
22. Rachmadi MF, Valdes-Hernandez MDC, Makin S, Wardlaw J, Komura T. Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks. Medical image analysis. 2020;63:101712.
23. Sohaib M, Kim CH, Kim JM. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis. Sensors (Basel). 2017;17(12).
24. Loh BCS, Then PHH. Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions. mHealth. 2017;3:45.
25. Thung KH, Yap PT, Shen D. Multi-stage Diagnosis of Alzheimer's Disease with Incomplete Multimodal Data via Multi-task Deep Learning. Deep learning in medical image analysis and multimodal learning for clinical decision support : third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, h. 2017;10553:160-8.
26. Nishikawa RM, Bae KT. Importance of Better Human-Computer Interaction in the Era of Deep Learning: Mammography Computer-Aided Diagnosis as a Use Case. Journal of the American College of Radiology : JACR. 2018;15(1 Pt A):49-52. 27. Weng S, Xu X, Li J, Wong STC. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer. Journal of biomedical optics. 2017;22(10):1-10.
28. Suk HI, Lee SW, Shen D. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis. Brain structure & function. 2016;221(5):2569-87.
29. Li R, Zhang W, Suk HI, Wang L, Li J, Shen D, et al. Deep learning based imaging data completion for improved brain disease diagnosis. Med Image Comput Comput Assist Interv. 2014;17(Pt 3):305-12.
30. Suk HI, Lee SW, Shen D. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage. 2014;101:569-82.
31. Mojiri Forooshani P, Biparva M, Ntiri EE, Ramirez J, Boone L, Holmes MF, et al. Deep Bayesian networks for uncertainty estimation and adversarial resistance of white matter hyperintensity segmentation. Human Brain Mapping. 2022;43(7):2089-108.
32. Moeskops P, de Bresser J, Kuijf HJ, Mendrik AM, Biessels GJ, Pluim JPW, et al. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI. NeuroImage: Clinical. 2018;17:251-62.
33. Kuijf HJ, Biesbroek JM, Bresser JD, Heinen R, Andermatt S, Bento M, et al. Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge. IEEE Transactions on Medical Imaging. 2019;38(11):2556-68.
34. Doshi J, Erus G, Habes M, Davatzikos C. DeepMRSeg: A convolutional deep neural network for anatomy and abnormality segmentation on MR images. arXiv preprint arXiv:190702110. 2019.
35. He K, Zhang X, Ren S, Sun J, editors. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 27-30 June 2016.
36. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. American Journal of Roentgenology. 1987;149(2):351-6.