Keywords: White Matter, Machine Learning/Artificial Intelligence, Tractography & Fiber Modelling
Shape features of the arcuate fasciculi (AF) can be used for predicting language laterality by a machine-learning algorithm as determined by language task-based functional MRI (tb-fMRI) laterality index (LI) relatively accurately (AUC = 0.893, accuracy = 0.868) in a sample of 60 clinical preoperative patients with variable pathology. Constrained spherical deconvolution (CSD) tractograms seemed to give the best outcome of model training regardless of additional streamline filtering or anatomical constraint. The best-performing model appeared to prioritise bundle curl, irregularity and span over the more conventional measures of surface-area and volume.1. Middlebrooks, E. H., Yagmurlu, K., Szaflarski, J. P., Rahman, M. & Bozkurt, B. A contemporary framework of language processing in the human brain in the context of preoperative and intraoperative language mapping. Neuroradiology 59, 69–87 (2017).
2. Seghier, M. L. Laterality index in functional MRI: methodological issues. Magn. Reson. Imaging 26, 594–601 (2008).
3. Manan, H. A., Franz, E. A. & Yahya, N. The utilisation of resting-state fMRI as a pre-operative mapping tool in patients with brain tumours in comparison to task-based fMRI and intraoperative mapping: A systematic review. Eur. J. Cancer Care (Engl.) 30, e13428 (2021).
4. Rolinski, R. et al. Language lateralization from task‐based and resting state functional MRI in patients with epilepsy. Hum. Brain Mapp. 41, 3133–3146 (2020).
5. Phillips, N. L., Shatil, A. S., Go, C., Robertson, A. & Widjaja, E. Resting-State Functional MRI for Determining Language Lateralization in Children with Drug-Resistant Epilepsy. Am. J. Neuroradiol. 42, 1299–1304 (2021).
6. Bhroin, M. N., Molloy, E. J. & Bokde, A. L. W. Relationship between resting-state fMRI functional connectivity with motor and language outcome after perinatal brain injury – A systematic review. Eur. J. Paediatr. Neurol. 33, 36–49 (2021).
7. Rodrigo, S. et al. Language lateralization in temporal lobe epilepsy using functional MRI and probabilistic tractography. Epilepsia 49, 1367–1376 (2008).
8. Allendorfer, J. B. et al. Arcuate fasciculus asymmetry has a hand in language function but not handedness. Hum. Brain Mapp. 37, 3297–3309 (2016).
9. Delgado-Fernández, J. et al. Language hemispheric dominance analyzed with magnetic resonance DTI: correlation with the Wada test. J. Neurosurg. 134, 1703–1710 (2020).
10. McDonald, C. R. et al. Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy. Neurology 71, 1869–1876 (2008).
11. Piervincenzi, C. et al. Multimodal assessment of hemispheric lateralization for language and its relevance for behavior. NeuroImage 142, 351–370 (2016).
12. Silva, G. & Citterio, A. Hemispheric asymmetries in dorsal language pathway white-matter tracts: A magnetic resonance imaging tractography and functional magnetic resonance imaging study. Neuroradiol. J. 30, 470–476 (2017).
13. Yazbek, S., Hage, S., Mallak, I. & Smayra, T. Tractography of the arcuate fasciculus in healthy right-handed and left-handed multilingual subjects and its relation to language lateralization on functional MRI. Sci. Rep. 11, 20936 (2021).
14. Zoli, M. et al. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front. Neurol. 12, (2021).
15. Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).
16. Basser, P. J., Mattiello, J. & LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994).
17. Mori, S., Crain, B. J., Chacko, V. P. & van Zijl, P. C. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999).
18. Tournier, J.-D. D., Calamante, F. & Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007).
19. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, 2016). doi:10.1145/2939672.2939785.
20. Ashburner, J. et al. Statistical Parametric Mapping: The Analysis of Functional Brain Images. (2006).
21. Yushkevich, P. A. et al. User-Guided Segmentation of Multi-modality Medical Imaging Datasets with ITK-SNAP. Neuroinformatics 17, 83–102 (2019).
22. Radwan, A. M. et al. Virtual brain grafting: Enabling whole brain parcellation in the presence of large lesions. NeuroImage 229, 117731 (2021).
23. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
24. Tourbier, S., Alemán-Gómez, Y., Griffa, A., Cuadra, M. B. & Hagmann, P. Multi-Scale Brain Parcellator: a BIDS App for the Lausanne Connectome Parcellation. F1000Research 9, (2020).
25. Radwan, A. M. et al. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. NeuroImage 254, 119029 (2022).
26. Yeh, F.-C. Shape analysis of the human association pathways. NeuroImage 223, 117329 (2020).