Keywords: Tendon/Ligament, Quantitative Imaging
In this study,to investigate the diagnostic value of quantitative parameters of synthetic magnetic resonance image in the grade of rotator cuff injury , we found that the T2 values had high diagnostic efficacy in grading the degree of rotator cuff injury, especially the T2 values of the lateral subregion and the middle subregion had high diagnostic efficacy in differentiating complete tears from partial tears, tendinopathy and normal tendons.[1] Hughes J D, Gibbs C M, Reddy R P, et al. Repair of high-grade partial thickness supraspinatus tears after surgical completion of the tear have a lower retear rate when compared to full-thickness tear repair[J]. Knee Surg Sports Traumatol Arthrosc, 2021,29(7):2370-2375.DOI:10.1007/s00167-021-06524-9.
[2] Nozaki T, Tasaki A, Horiuchi S, et al. Predicting Retear after Repair of Full-Thickness Rotator Cuff Tear: Two-Point Dixon MR Imaging Quantification of Fatty Muscle Degeneration-Initial Experience with 1-year Follow-up[J]. Radiology, 2016,280(2):500-509.DOI:10.1148/radiol.2016151789.
[3] Blanchard T K, Bearcroft P W, Constant C R, et al. Diagnostic and therapeutic impact of MRI and arthrography in the investigation of full-thickness rotator cuff tears[J]. Eur Radiol, 1999,9(4):638-642.DOI:10.1007/s003300050724.
[4] Lenza M, Buchbinder R, Takwoingi Y, et al. Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered[J]. Cochrane Database Syst Rev, 2013(9):D9020.DOI:10.1002/14651858.CD009020.pub2.
[5] de Jesus J O, Parker L, Frangos A J, et al. Accuracy of MRI, MR arthrography, and ultrasound in the diagnosis of rotator cuff tears: a meta-analysis[J]. AJR Am J Roentgenol, 2009,192(6):1701-1707.DOI:10.2214/AJR.08.1241.
[6] Ma J, Sahoo S, Imrey P B, et al. Inter-rater agreement of rotator cuff tendon and muscle magnetic resonance imaging parameters evaluated preoperatively and during the first postoperative year following rotator cuff repair[J]. Journal of Shoulder and Elbow Surgery, 2021,30(12):e741-e752.DOI:10.1016/j.jse.2021.04.021.
[7] Khazzam M, Kuhn J E, Mulligan E, et al. Magnetic resonance imaging identification of rotator cuff retears after repair: interobserver and intraobserver agreement[J]. Am J Sports Med, 2012,40(8):1722-1727.DOI:10.1177/0363546512449424.
[8] Bittersohl B, Miese F R, Dekkers C, et al. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of glenohumeral cartilage in asymptomatic volunteers at 3 T[J]. Eur Radiol, 2013,23(5):1367-1374.DOI:10.1007/s00330-012-2718-5.
[9] Juras V, Zbyn S, Pressl C, et al. Regional variations of T(2)* in healthy and pathologic achilles tendon in vivo at 7 Tesla: preliminary results[J]. Magn Reson Med, 2012,68(5):1607-1613.DOI:10.1002/mrm.24136.
[10] Robson M D, Benjamin M, Gishen P, et al. Magnetic resonance imaging of the Achilles tendon using ultrashort TE (UTE) pulse sequences[J]. Clin Radiol, 2004,59(8):727-735.DOI:10.1016/j.crad.2003.11.021.
[11] Juras V, Apprich S, Pressl C, et al. Histological correlation of 7 T multi-parametric MRI performed in ex-vivo Achilles tendon[J]. Eur J Radiol, 2013,82(5):740-744.DOI:10.1016/j.ejrad.2011.09.022.
[12] Crema M D, Roemer F W, Marra M D, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research[J]. Radiographics, 2011,31(1):37-61.DOI:10.1148/rg.311105084.
[13] Trattnig S, Zbyn S, Schmitt B, et al. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications[J]. Eur Radiol, 2012,22(11):2338-2346.DOI:10.1007/s00330-012-2508-0.
[14] Anz A W, Lucas E P, Fitzcharles E K, et al. MRI T2 mapping of the asymptomatic supraspinatus tendon by age and imaging plane using clinically relevant subregions[J]. Eur J Radiol, 2014,83(5):801-805.DOI:10.1016/j.ejrad.2014.02.002.
[15] Ganal E, Ho C P, Wilson K J, et al. Quantitative MRI characterization of arthroscopically verified supraspinatus pathology: comparison of tendon tears, tendinosis and asymptomatic supraspinatus tendons with T2 mapping[J]. Knee Surg Sports Traumatol Arthrosc, 2016,24(7):2216-2224.DOI:10.1007/s00167-015-3547-2.
[16] Drake-Perez M, Delattre B, Boto J, et al. Normal Values of Magnetic Relaxation Parameters of Spine Components with the Synthetic MRI Sequence[J]. AJNR Am J Neuroradiol, 2018,39(4):788-795.DOI:10.3174/ajnr.A5566.
[17] Lou B, Jiang Y, Li C, et al. Quantitative Analysis of Synthetic Magnetic Resonance Imaging in Alzheimer's Disease[J]. Front Aging Neurosci, 2021,13:638731.DOI:10.3389/fnagi.2021.638731.
[18] Schmidbauer V, Geisl G, Diogo M, et al. SyMRI detects delayed myelination in preterm neonates[J]. Eur Radiol, 2019,29(12):7063-7072.DOI:10.1007/s00330-019-06325-2.
[19] Goncalves F G, Serai S D, Zuccoli G. Synthetic Brain MRI: Review of Current Concepts and Future Directions[J]. Top Magn Reson Imaging, 2018,27(6):387-393.DOI:10.1097/RMR.0000000000000189.
[20] Roux M, Hilbert T, Hussami M, et al. MRI T2 Mapping of the Knee Providing Synthetic Morphologic Images: Comparison to Conventional Turbo Spin-Echo MRI[J]. Radiology, 2019,293(3):620-630.DOI:10.1148/radiol.2019182843.
[21] Schmidbauer V, Dovjak G, Geisl G, et al. Impact of Prematurity on the Tissue Properties of the Neonatal Brain Stem: A Quantitative MR Approach[J]. AJNR Am J Neuroradiol, 2021,42(3):581-589.DOI:10.3174/ajnr.A6945.
[22] Zhao L, Liang M, Shi Z, et al. Preoperative volumetric synthetic magnetic resonance imaging of the primary tumor for a more accurate prediction of lymph node metastasis in rectal cancer[J]. Quant Imaging Med Surg, 2021,11(5):1805-1816.DOI:10.21037/qims-20-659.
[23] Ambarki K, Lindqvist T, Wahlin A, et al. Evaluation of automatic measurement of the intracranial volume based on quantitative MR imaging[J]. AJNR Am J Neuroradiol, 2012,33(10):1951-1956.DOI:10.3174/ajnr.A3067.
[24] Jung Y, Gho S M, Back S N, et al. The feasibility of synthetic MRI in breast cancer patients: comparison of T2 relaxation time with multiecho spin echo T2 mapping method[J]. Br J Radiol, 2018:20180479.DOI:10.1259/bjr.20180479.
[25] Arita Y, Takahara T, Yoshida S, et al. Quantitative Assessment of Bone Metastasis in Prostate Cancer Using Synthetic Magnetic Resonance Imaging[J]. Invest Radiol, 2019,54(10):638-644.DOI:10.1097/RLI.0000000000000579.
[26] Lee C, Choi Y J, Jeon K J, et al. Synthetic magnetic resonance imaging for quantitative parameter evaluation of temporomandibular joint disorders[J]. Dentomaxillofac Radiol, 2021,50(5):20200584.DOI:10.1259/dmfr.20200584.
[27] Jiang Y, Yu L, Luo X, et al. Quantitative synthetic MRI for evaluation of the lumbar intervertebral disk degeneration in patients with chronic low back pain[J]. Eur J Radiol, 2020,124:108858.DOI:10.1016/j.ejrad.2020.108858.
[28] Yi J, Lee Y H, Song H T, et al. Clinical Feasibility of Synthetic Magnetic Resonance Imaging in the Diagnosis of Internal Derangements of the Knee[J]. Korean J Radiol, 2018,19(2):311-319.DOI:10.3348/kjr.2018.19.2.311.
[29] Fayad L M, Parekh V S, de Castro L R, et al. A Deep Learning System for Synthetic Knee Magnetic Resonance Imaging: Is Artificial Intelligence-Based Fat-Suppressed Imaging Feasible?[J]. Invest Radiol, 2021,56(6):357-368.DOI:10.1097/RLI.0000000000000751.
Figure 2-6 ROC curve in the diagnosis of RC injury of different grades
(FIG. 2 ROC curves of T2 values in lateral and mediate subregions in the diagnosis of grade II and IV RC injuries.
FIG. 3 ROC curves of T2 values in lateral and mediate subregions in the diagnosis of grade I and grade IV RC injuries.
FIG. 4 ROC curve of T2 value of lateral subregion in the diagnosis of grade III and IV RC injuries.
FIG. 5 ROC curves of T2 values in the middle subregion for the diagnosis of grade I and III RC injuries.
FIG. 6 ROC curves of T2 values in the middle subregion for the diagnosis of grade II and III RC injuries)