Keywords: Brain Connectivity, fMRI (resting state), connectome-based predictive modeling
Physiologic significance of the global signal and the use (or omission) global signal regression (GSR) in fMRI data preprocessing remain controversial. Connectome-based predictive modeling(CPM) is one of the most commonly used machine-learning models. The effect of GSR on the performance of the CPM model is not well understood. We performed two preprocessing procedures for fMRI data: GSR and without GSR, and we used different brain atlases to construct CPM models to predict age, full-scale, performance and verbal IQ. We found that GSR can improve the predictive performance of CPM, at least for age, full-scale, performance and verbal IQ .1. Tu Y, Zeng F, Lan L, et al. An fMRI-based neural marker for migraine without aura. Neurology. Feb 18 2020;94(7):e741-e751. doi:10.1212/WNL.0000000000008962
2. Lichenstein SD, Scheinost D, Potenza MN, Carroll KM, Yip SW. Dissociable neural substrates of opioid and cocaine use identified via connectome-based modelling. Mol Psychiatry. Aug 2021;26(8):4383-4393. doi:10.1038/s41380-019-0586-y
3. Yin T, Sun R, He Z, et al. Subcortical-Cortical Functional Connectivity as a Potential Biomarker for Identifying Patients with Functional Dyspepsia. Cereb Cortex. Dec 10 2021;doi:10.1093/cercor/bhab419 4. Shen X, Finn ES, Scheinost D, et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat Protoc. Mar 2017;12(3):506-518. doi:10.1038/nprot.2016.178
5. Beaty RE, Kenett YN, Christensen AP, et al. Robust prediction of individual creative ability from brain functional connectivity. Proc Natl Acad Sci U S A. Jan 30 2018;115(5):1087-1092. doi:10.1073/pnas.1713532115
6. Jiang R, Calhoun VD, Zuo N, et al. Connectome-based individualized prediction of temperament trait scores. Neuroimage. Dec 2018;183:366-374. doi:10.1016/j.neuroimage.2018.08.038
7. Liu TT, Nalci A, Falahpour M. The global signal in fMRI: Nuisance or Information? Neuroimage. Apr 15 2017;150:213-229. doi:10.1016/j.neuroimage.2017.02.036
8. Murphy K, Fox MD. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage. Jul 1 2017;154:169-173. doi:10.1016/j.neuroimage.2016.11.052
9. Li J, Kong R, Liegeois R, et al. Global signal regression strengthens association between resting-state functional connectivity and behavior. Neuroimage. Aug 1 2019;196:126-141. doi:10.1016/j.neuroimage.2019.04.016
10. Sun H, Jiang R, Qi S, et al. Preliminary prediction of individual response to electroconvulsive therapy using whole-brain functional magnetic resonance imaging data. Neuroimage Clin. 2020;26:102080. doi:10.1016/j.nicl.2019.102080
11. Jiang R, Calhoun VD, Cui Y, et al. Multimodal data revealed different neurobiological correlates of intelligence between males and females. Brain Imaging Behav. Oct 2020;14(5):1979-1993. doi:10.1007/s11682-019-00146-z
12. Jiang R, Calhoun VD, Fan L, et al. Gender Differences in Connectome-based Predictions of Individualized Intelligence Quotient and Sub-domain Scores. Cereb Cortex. Mar 14 2020;30(3):888-900. doi:10.1093/cercor/bhz134
13. Rutherford HJV, Potenza MN, Mayes LC, Scheinost D. The Application of Connectome-Based Predictive Modeling to the Maternal Brain: Implications for Mother-Infant Bonding. Cereb Cortex. Mar 14 2020;30(3):1538-1547. doi:10.1093/cercor/bhz185