Keywords: Alzheimer's Disease, Dementia
Imaging measures of tissue microstructure of the fornix are are potential biomarkers for cognitive decline in Alzheimer’s disease (AD). However, partial volume averaging (PVA) between the fornix and cerobrospinal fluid can be substantial. As a result, measured changes may reflect atrophy, not changes in tissue microstructure. Neurite Orientation Dispersion and Direction Imaging and Free Water Elimination diffusion tensor imaging account for PVA. We present results from a cohort of AD patients, patients with mild cognitive impairment (MCI) and cognitively normal (CN) subjects, showing that NODDI and DTI measures correlate with specific scores cognitive status.We are grateful for funding from NIH grants P30AG072959 and P30AG062428.
1. Kivisakk, P., Magdamo, C., Trombetta, B. A., Noori, A., Kuo, Y. K. E., Chibnik, L. B., Carlyle, B. C., Serrano-Pozo, A., Scherzer, C. R., Hyman, B. T., Das, S. & Arnold, S. E. Plasma biomarkers for prognosis of cognitive decline in patients with mild cognitive impairment. Brain Commun 2022; 4:fcac155.
2. Xiao, Z., Wu, X., Wu, W., Yi, J., Liang, X., Ding, S., Zheng, L., Luo, J., Gu, H., Zhao, Q., Xu, H. & Ding, D. Plasma biomarker profiles and the correlation with cognitive function across the clinical spectrum of Alzheimer's disease. Alzheimers Res Ther 2021; 13:123.
3. Tosun, D., Demir, Z., Veitch, D. P., Weintraub, D., Aisen, P., Jack, C. R., Jr., Jagust, W. J., Petersen, R. C., Saykin, A. J., Shaw, L. M., Trojanowski, J. Q., Weiner, M. W. & Alzheimer's Disease Neuroimaging, I. Contribution of Alzheimer's biomarkers and risk factors to cognitive impairment and decline across the Alzheimer's disease continuum. Alzheimers Dement 2022; 18:1370-1382.
4. Cullen, N. C., Leuzy, A., Palmqvist, S., Janelidze, S., Stomrud, E., Pesini, P., Sarasa, L., Allué, J. A., Proctor, N. K., Zetterberg, H., Dage, J. L., Blennow, K., Mattsson-Carlgren, N. & Hansson, O. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nature Aging 2021; 1:114-123.
5. Nowrangi, M. A. & Rosenberg, P. B. The fornix in mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2015; 7:1.
6. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012; 61:1000-1016.
7. Hoy, A. R., Koay, C. G., Kecskemeti, S. R. & Alexander, A. L. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage 2014; 103:323-333.
8. Bergmann, O., Henriques, R., Westin, C. F. & Pasternak, O. Fast and accurate initialization of the free-water imaging model parameters from multi-shell diffusion MRI. NMR Biomed 2020; 33:e4219.
9. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. Neuroimage 2012; 62:782-790.
10. NODDI toolbox, <http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab> (
11. Henriques, R. N., Rokem, A., Garyfallidis, E., St-Jean, S., Peterson, E. T. & Correia, M. M. [Re] Optimization of a free water elimination two-compartment model for diffusion tensor imaging. ReScience 2017; 3:2.
12. Assaf, Y., Freidlin, R. Z., Rohde, G. K. & Basser, P. J. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 2004; 52:965-978.
13. Greve, D. N., Billot, B., Cordero, D., Hoopes, A., Hoffmann, M., Dalca, A. V., Fischl, B., Iglesias, J. E. & Augustinack, J. C. A deep learning toolbox for automatic segmentation of subcortical limbic structures from MRI images. Neuroimage 2021; 244:118610.
14. Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996; 29:162-173.
15. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. J R Stat Soc B 1995; 57:289-300.
16. Metzler-Baddeley, C., O'Sullivan, M. J., Bells, S., Pasternak, O. & Jones, D. K. How and how not to correct for CSF-contamination in diffusion MRI. Neuroimage 2012; 59:1394-1403.
17. Budde, M. D., Kim, J. H., Liang, H. F., Schmidt, R. E., Russell, J. H., Cross, A. H. & Song, S. K. Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn Reson Med 2007; 57:688-695.