Keywords: Arterial spin labelling, Arterial spin labelling
Cerebral blood flow (CBF) and arterial transit time (ATT) can be quantified through fitting the arterial spin labeling (ASL) perfusion MRI signal acquired at different post-labeling delays (PLDs) into a kinetic model. Acquiring multiple-PLD ASL MRI needs exponentially prolonged total scan time compared to the single-PLD acquisition, making it highly sensitive to motions and impractical for clinical use. We proposed a deep neural network that can reliably estimate ATT and CBF maps from significantly fewer PLD ASL MRI acquisitions without image quality loss.[1] J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magn Reson Med, vol. 23, no. 1, pp. 37–45, 1992.
[2] R. B. Buxton, L. R. Frank, E. C. Wong, B. Siewert, S. Warach, and R. R. Edelman, “A general kinetic model for quantitative perfusion imaging with arterial spin labeling,” Magn Reson Med, vol. 40, no. 3, pp. 383–396, 1998.
[3] J. B. Gonzalez-At, D. C. Alsop, and J. A. Detre, “Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 43, no. 5, pp. 739–746, 2000.
[4] M. Günther, M. Bock, and L. R. Schad, “Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR),” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 46, no. 5, pp. 974–984, 2001.
[5] D. Kim, M. Lipford, H. He, Q. Ding, V. Ivanovic, S. Lockhart, S. Craft, C. Whitlow, and Y. Jung, “A Three-Dimensional Convolutional Neural Network in ASL with Reduced Number of Inversion Times or Averages,” in ISMRM Perfusion Workshop, 2022.
[6] N. J. Luciw, Z. Shirzadi, S. E. Black, M. Goubran, and B. J. MacIntosh, “Automated Generation of Cerebral Blood Flow Maps Using Deep Learning and Multiple Delay Arterial Spin-Labelled MRI,” bioRxiv, 2021.
[7] S. Y. Bookheimer, D. H. Salat, M. Terpstra, B. M. Ances, D. M. Barch, R. L. Buckner, G. C. Burgess, S. W. Curtiss, M. Diaz-Santos, J. S. Elam, and others, “The lifespan human connectome project in aging: an overview,” Neuroimage, vol. 185, pp. 335–348, 2019.
[8] M. P. Harms, L. H. Somerville, B. M. Ances, J. Andersson, D. M. Barch, M. Bastiani, S. Y. Bookheimer, T. B. Brown, R. L. Buckner, G. C. Burgess, and others, “Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects,” Neuroimage, vol. 183, pp. 972–984, 2018.
[9] M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and S. M. Smith, “Fsl,” Neuroimage, vol. 62, no. 2, pp. 782–790, 2012.
[10] Z. Wang, G. K. Aguirre, H. Rao, J. Wang, M. A. Fernández-Seara, A. R. Childress, and J. A. Detre, “Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx,” Magn Reson Imaging, vol. 26, no. 2, pp. 261–269, 2008.
[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
[12] J. Yu, Y. Fan, J. Yang, N. Xu, Z. Wang, X. Wang, and T. Huang, “Wide activation for efficient and accurate image super-resolution,” arXiv preprint arXiv:1808.08718, 2018.
[13] W. Dai, P. M. Robson, A. Shankaranarayanan, and D. C. Alsop, “Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging,” Magn Reson Med, vol. 67, no. 5, pp. 1252–1265, 2012.