Keywords: Data Acquisition, fMRI
Static and dynamic ∆B0 field imperfections are detrimental for fMRI applications as they degrade the temporal SNR (tSNR) and the sensitivity to the BOLD contrast. In this work we propose an experimental protocol for field imperfection monitoring and correction on 3D-SPARKLING fMRI data using the Skope Clip-on field camera in an alternative setting challenging its long TR constraint. We demonstrate the viability of our protocol and the reproducible gain in image quality, tSNR and retinotopic maps when correcting static and dynamic field imperfections on resting-state and task-based fMRI data for 3 healthy volunteers1Chaithya, G.R., Weiss, P., Massire, A., Vignaud, A., Ciuciu, P.: Optimizing full 3D SPARKLING trajectories for high-resolution Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging 41(8), 2105–2117 (2022).
2Amor, Z., Chaithya, G.R., Daval-Frérot, G., Thirion, B., Mauconduit, F.,Ciuciu, P., Vignaud, A.: Prospects of non-Cartesian 3D-sparkling encoding for functional MRI: A preliminary case study for retinotopic mapping. Proceedings of the 30’th Scientific Meeting of the International Society for Magnetic Resonance in Medicine (2022).
3Doneva, M.: Mathematical Models for Magnetic Resonance Imaging Reconstruction. IEEE Signal Processing Magazine 37(1), 24–32 (2020).
4De Zanche, N., Barmet, C., Nordmeyer-Massner, J.A., Pruessmann, K.P.: NMR Probes for Measuring Magnetic Fields and Field Dynamics in MR Systems. Magnetic Resonance in Medecine 60(1), 176–186 (2008).
5Barmet, C., De Zanche, N., Pruessmann, K.P.: Spatiotemporal Magnetic Field Monitoring for MR. Magnetic Resonance in Medecine 60(1), 187–197 (2008).
6Vannesjo, S.J., Wilm, B.J., Duerst, Y., Gross, S., Brunner, D.O., Dietrich,B.E., Schmid, T., Barmet, C., Pruessmann, K.P.: Retrospective Correction of Physiological Field Fluctuations in High-field Brain MRI using Concurrent Field Monitoring. Magnetic Resonance in Medecine 73(5), 1833–1843 (2015).
7Bollmann, S., Kasper, L., Vannesjo, S.J., Diaconescu, A.O., Dietrich, B.E.,Gross, S., Stephan, K.E., Pruessmann, K.P.: Analysis and Correction of Field Fluctuations in fMRI Data Using Field Monitoring. NeuroImage 154(1),92–105 (2017).
8Schwarz, J.M., Stirnberg, R., Ehses, P., Stocker, T.: Correction of Physiological Field Fluctuations in High- and Low-resolution 3D-EPI Acquisitions at 7 Tesla. Proceedings of the 27th Scientific Meeting of the International Society for Magnetic Resonance in Medicine (2019).
9Amor, Z., Chaithya, G.R., Le Ster, C., Daval-Frérot, G., Boulant, N.,Mauconduit, F., Mirkes, C., Ciuciu, P., Vignaud, A.: B0 field distortions monitoring and correction for 3D non-Cartesian fMRI acquisitions using a field camera: Application to 3D-SPARKLING at 7T. Proceedings of the 30’th Scientific Meeting of the International Society for Magnetic Resonance in Medicine (2022)
10El Gueddari, L., Lazarus, C., Carrié, H., Vignaud, A., Ciuciu, P.: Self-calibrating nonlinear reconstruction algorithms for variable density sampling and parallel reception MRI. IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM) (2018).
11Farrens, S., Grigis, A., El Gueddari, L., Ramzi, Z., Chaithya, G.R.,Starck, S., Sarthou, B., Cherkaoui, H., Ciuciu, P., Starck, J.-L.: Pysap:Python sparse data analysis package for multidisciplinary image processing. Astronomy and Computing 32 (2020).
12https://github.com/hbp-brain-charting/public_protocols
13https://github.com/CEA_COSMIC/pysap-mri
14https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/