Keywords: Blood vessels, Velocity & Flow, Pulsatility, Pulse waves
As we get older, the elasticity of our blood vessels decreases significantly, which can lead to a diminished absorption of blood pressure pulsations, potentially causing damage including hemorrhagic stroke and microbleeds. We studied pulsatility in the circle of Willis, which has been hypothesized to be a pressure absorber, by the method of MRI hypersampling by analytic phase projection (APP). A significant correlation of pulsatility in the circle of Willis with age was found. This finding is interpreted as an ageing-related increase in pulsatile flow relative to the steady flow component of overall cerebral blood flow.| | Circle of Willis | Baseline | ||
| Variable | t-value | p-value | t-value | p-value |
| Age | 2.7 | 0.012 | -0.6 | 0.6 |
| Heart rate | -0.5 | 0.6 | 0.2 | 0.8 |
| Gender | -0.7 | 0.5 | -0.9 | 0.4 |
| Motion | -1.0 | 0.3 | 0.4 | 0.7 |
The authors acknowledge help from David Parker and Amirreza Sedaghat. Disclosure: The corresponding author’s institution filed a patent application related to the hypersampling method used in this manuscript.
1 Henry Feugeas, M. C. et al. Age-related cerebral white matter changes and pulse-wave encephalopathy: Observations with three-dimensional MRI. Magn. Reson. Imaging 23, 929-937 (2005).
2 Guyton, A. C. & Hall, J. E. Textbook of Medical Physiology. 11th edn (Saunders/Elsevier 2006).
3 Laurent, S. et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27, 2588-2605 (2006).
4 O'Rourke, M. F. & Hashimoto, J. Mechanical factors in arterial aging: A clinical perspective. J Am Coll Cardiol 50, 1-13 (2007).
5 Tarumi, T. et al. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cerebr Blood F Met 34, 971-978 (2014).
6 Henskens, L. H. G. et al. Increased aortic pulse wave velocity is associated with silent cerebral small-vessel disease in hypertensive patients. Hypertension 52, 1120-1126 (2008).
7 Tarumi, T., Shah, F., Tanaka, H. & Haley, A. P. Association between central elastic artery stiffness and cerebral perfusion in deep subcortical gray and white matter. Am J Hypertens 24, 1108-1113 (2011).
8 Hughes, T. M. et al. Pulse wave velocity is associated with beta-amyloid deposition in the brains of very elderly adults. Neurology 81, 1711-1718 (2013).
9 Tarumi, T. et al. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J. Cereb. Blood Flow Metab. 34, 971-978 (2014).
10 Jessen, N. A., Munk, A. S. F., Lundgaard, I. & Nedergaard, M. The glymphatic system: A beginner's guide. Neurochem. Res. 40, 2583-2599 (2015).
11 Bacyinski, A., Xu, M. S., Wang, W. & Hu, J. N. The paravascular pathway for brain waste clearance: Current understanding, significance and controversy. Front. Neuroanat. 11 (2017).
12 Vrselja, Z., Brkic, H., Mrdenovic, S., Radic, R. & Curic, G. Function of circle of Willis. J Cerebr Blood F Met 34, 578-584 (2014).
13 Dagli, M. S., Ingeholm, J. E. & Haxby, J. V. Localization of cardiac-induced signal change in fMRI. NeuroImage 9, 407-415 (1999).
14 Chang, C., Cunningham, J. P. & Glover, G. H. Influence of heart rate on the BOLD signal: The cardiac response function. NeuroImage 44, 857-869 (2009).
15 Voss, H. U., Dyke, J. P., Ballon, D. J., Schiff, N. D. & Tabelow, K. Magnetic Resonance Advection Imaging (MRAI) depicts vascular anatomy. Conference abstract OHBM - Human Brain Mapping, 2436 (2015).
16 Voss, H. U., Dyke, J. P. & Ballon, D. J. Mapping cerebrovascular dynamics with MR advection imaging (MRAI): Estimation bias and image reconstruction challenges. Conference abstract ICERM - Computational and Analytical Aspects of Image Reconstruction (2015).
17 Voss, H. U., Dyke, J. P., Tabelow, K., Ballon, D. J. & Schiff, N. D. Magnetic resonance advection imaging (MRAI): Sensitivity to pulsatile flow. Conference abstract BRAIN/PET 2015, 141 (2015).
18 Voss, H. U., Dyke, J. P., Tabelow, K., Schiff, N. D. & Ballon, D. J. Mapping cerebrovascular dynamics with magnetic resonance advection imaging (MRAI): Modeling challenges and estimation bias. Conference abstract Meeting of the Society for Neuroscience (2015).
19 Bianciardi, M. et al. The pulsatility volume index: An indicator of cerebrovascular compliance based on fast magnetic resonance imaging of cardiac and respiratory pulsatility. Philos T R Soc A 374, 1-19 (2016).
20 Voss, H. U., Dyke, J. P., Tabelow, K., Schiff, N. D. & Ballon, D. J. Magnetic resonance advection imaging of cerebrovascular pulse dynamics. J. Cereb. Blood Flow Metab. 37, 1223-1235 (2017).
21 Hubmer, S., Neubauer, A., Ramlau, R. & Voss, H. U. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems and Imaging 12, 175-204 (2018).
22 Voss, H. U., Stadler, J., Dyke, J. P. & Ballon, D. J. A transfer function model for local signal propagation in spatiotemporal MR data. Proceedings of the International Society for Magnetic Resonance in Medicine, 155 (2018).
23 Hubmer, S., Neubauer, A., Ramlau, R. & Voss, H. U. A conjugate-gradient approach to the parameter estimation problem of magnetic resonance advection imaging. Inverse Probl Sci En 28, 1154-1165 (2020).
24 Tong, Y. J., Hocke, L. M. & Frederick, B. D. Short repetition time multiband echo-planar imaging with simultaneous pulse recording allows dynamic imaging of the cardiac pulsation signal. Magn. Reson. Med. 72, 1268-1276 (2014).
25 Voss, H. U. Hypersampling of pseudo-periodic signals by analytic phase projection. Comput. Biol. Med. 98, 159-167 (2018).
26 Aslan, S., Hocke, L., Schwarz, N. & Frederick, B. Extraction of the cardiac waveform from simultaneous multislice fMRI data using slice sorted averaging and a deep learning reconstruction filter. NeuroImage 198, 303-316 (2019).
27 Voss, H. U. Intracranial pulse waves derived from dynamic MRI. Conference abstract Allen Workshop BioImage Informatics ( 2019).
28 Voss, H. U., Dyke, J. P., Ballon, D. J. & Gupta, A. MRI pulse wave profiles of cerebral arteries. Proceedings of the International Society for Magnetic Resonance in Medicine, 3247 ( 2019).
29 Jiang, H. X., Zhang, K., Wang, J. Y., Wang, X. Y. & Huang, P. F. Anomaly detection and identification in satellite telemetry data based on pseudo-period. Appl Sci-Basel 10 (2020).
30 Cohen, L. What is a multicomponent signal? ICASSP-92 -International Conference on Acoustics, Speech, and Signal Processing 1-5, E113-E116 (1992).
31 Sethares, W. A. Repetition and pseudo-periodicity. Tatra Mt. Math. Publ. 23, 1-16 (2001).
32 Fung, Y. C. Biomechanics: Circulation. 2nd edn (Springer 1997).
33 Zamir, M. The Physics of Pulsatile Flow. (AIP Press; Springer 2000).
34 Li, J. K. J. Dynamics of the Vascular System. (World Scientific 2004).
35 Franklin, S. S. Hypertension in older people: Part 1. J. Clin. Hypertens. (Greenwich) 8, 444-449 (2006).
36 Moeller, S. et al. Multiband multislice GE-EPI at 7 Tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63, 1144-1153 (2010).
Figure 1: MRI pulse waves. Left: The MRI pulse wave amplitudes over the brain slice acquired with ultrafast MRI, for a single subject. The region of interest for the analysis of the circle of Willis and the baseline region without dominant pulsatility are highlighted. MCA = Middle cerebral artery. Right: The maximum-amplitude MRI pulse wave in the circle of Willis shows the characteristic systolic upstroke starting at around phase value -2.5 rad. The baseline signal is shown in gray.
Figure 2: Increase of mean pulse amplitudes with age in the circle of Willis. The post-hoc regression line slope is significantly different from zero with a p-value of 0.015. The amplitudes used here were normalized by the median baseline amplitude for each subject. The subject of Figure 1 is marked with an arrow.