References
1. Garel C, Chantrel E, Brisse H, et al. Fetal Cerebral Cortex: Normal Gestational Landmarks Identified Using Prenatal MR Imaging. Vol 22.; 2001.
2. Dubois J, Lefèvre J, Angleys H, et al. The dynamics of cortical folding waves and prematurity-related deviations revealed by spatial and spectral analysis of gyrification. Neuroimage. 2019;185:934-946. doi:10.1016/j.neuroimage.2018.03.005
3. Dubois J, Benders M, Borradori-Tolsa C, et al. Primary cortical folding in the human newborn: An early marker of later functional development. Brain. 2008;131(8):2028-2041. doi:10.1093/brain/awn137
4. Garel C. MRI of the Fetal Brain Normal Development and Cerebral Pathologies.
5. Dubois J, Dehaene-Lambertz G, Dehaene-Lambertz Fetal G, development postnatal. Fetal and postnatal development of the cortex: MRI and genetics. Brain Mapping: An Encyclopedic Reference. 2015;2:11-19. Accessed September 28, 2022. https://hal.archives-ouvertes.fr/hal-02436275
6. Schmitt S, Ringwald KG, Meller T, et al. European Archives of Psychiatry and Clinical Neuroscience Associations of gestational age with gyrification and neurocognition in healthy adults. Eur Arch Psychiatry Clin Neurosci. 1:3. doi:10.1007/s00406-022-01454-0
7. Papaioannou G, Garel C. The fetal brain: migration and gyration anomalies — pre- and postnatal correlations. 1:3. doi:10.1007/s00247-022-05458-9
8. Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. 2014;13. doi:10.1016/S1474-4422(14)70040-7
9. Mangin JF, Jouvent E, Cachia A. In-vivo measurement of cortical morphology: Means and meanings. Curr Opin Neurol. 2010;23(4):359-367. doi:10.1097/WCO.0B013E32833A0AFC
10. Barkovich AJ. MRI analysis of sulcation morphology in polymicrogyria. Epilesia. Published online 2010:17-22. doi:10.1111/j.1528-1167.2009.02436.x
11. Wright R, Kyriakopoulou V, Ledig C, et al. Automatic quantification of normal cortical folding patterns from fetal brain MRI. Neuroimage. 2014;91:21-32. doi:10.1016/j.neuroimage.2014.01.034
12. Clouchoux C, Kudelski D, Gholipour A, et al. Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct Funct. 2012;217(1):127-139. doi:10.1007/s00429-011-0325-x
13. Rajagopalan V, Scott J, Habas PA, et al. Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. Journal of Neuroscience. 2011;31(8):2878-2887. doi:10.1523/JNEUROSCI.5458-10.2011
14. Habas PA, Scott JA, Roosta A, et al. Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cerebral Cortex. 2012;22(1):13-25. doi:10.1093/cercor/bhr053
15. Im K, Guimaraes A, Kim Y, et al. Quantitative folding pattern analysis of early primary sulci in human fetuses with brain abnormalities. American Journal of Neuroradiology. 2017;38(7):1449-1455. doi:10.3174/ajnr.A5217
16. Dudovitch G, Link-Sourani D, ben Sira L, Miller E, ben Bashat D, Joskowicz L. Deep Learning Automatic Fetal Structures Segmentation in MRI Scans with Few Annotated Datasets. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. ; 2020:365-374.
17. Ori Ben Zvi, Netanell Avisdris, Bossmat Yehuda, et al. Automatic segmentation of fetal brain components from MRI using deep learning. In: ISMRM . ; 2021.
18. Rigby RA, Stasinopoulos DM. Generalized Additive Models for Location, Scale and Shape. Vol 54.; 2005.
19. Stasinopoulos M, Rigby R, Heller G, de Bastiani F. Flexible Regression and Smoothing: Using GAMLSS in R.; 2019.
20. Benjamini Y, Yekutieli D. The Control of the False Discovery Rate in Multiple Testing under Dependency. Vol 29.; 2001.
21. Benjamini Y, Yekutieli D. False Discovery Rate–Adjusted Multiple Confidence Intervals for Selected Parameters. J Am Stat Assoc. 2005;100(469):71-81.
22. Borghi E, de Onis M, Garza C, et al. Construction of the World Health Organization child growth standards: Selection of methods for attained growth curves. Stat Med. 2006;25(2):247-265. doi:10.1002/sim.2227
23. Dubois J, Benders M, Cachia A, et al. Mapping the early cortical folding process in the preterm newborn brain. Cerebral Cortex. 2008;18(6):1444-1454. doi:10.1093/cercor/bhm180
24. Hu HH, Guo WY, Chen HY, et al. Morphological regionalization using fetal magnetic resonance images of normal developing brains. European Journal of Neuroscience. 2009;29(8):1560-1567. doi:10.1111/J.1460-9568.2009.06707.X
25. Shimony JS, Smyser CD, Wideman G, et al. Comparison of cortical folding measures for evaluation of developing human brain. Neuroimage. 2016;125:780-790. doi:10.1016/j.neuroimage.2015.11.001
26. Raznahan A, Shaw P, Lalonde F, et al. How Does Your Cortex Grow? Published online 2011. doi:10.1523/JNEUROSCI.0054-11.2011
27. Duvernoy CS, Smith DE, Manohar P, et al. Gender differences in adverse outcomes after contemporary percutaneous coronary intervention: An analysis from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) percutaneous coronary intervention registry. Am Heart J. 2010;159:677-683.e1. doi:10.1016/j.ahj.2009.12.040
28. Lohmann G. Extracting line representations of sulcal and gyral patterns in MR images of the human brain. IEEE Trans Med Imaging. 1998;17(6):1040-1048. doi:10.1109/42.746714
29. Chen H, Li Y, Ge F, Li G, Shen D, Liu T. Gyral net: A new representation of cortical folding organization. Med Image Anal. 2017;42:14-25. doi:10.1016/j.media.2017.07.001
30. Janssen J, Diáz-Caneja CM, Alloza C, et al. Dissimilarity in Sulcal Width Patterns in the Cortex can be Used to Identify Patients with Schizophrenia with Extreme Deficits in Cognitive Performance. Schizophr Bull. 2021;47(2):552-561. doi:10.1093/schbul/sbaa131
31. Kasprian G, Langs G, Brugger PC, et al. The Prenatal Origin of Hemispheric Asymmetry: An In Utero Neuroimaging Study. Cerebral Cortex. 2011;21:1076-1083. doi:10.1093/cercor/bhq179