Keywords: Tumors, Brain, Water content mapping, T1 mapping
Quantitative MRI was applied to assess T1 and water content (H2O) in brain tumors. 1/T1 and 1/H2O are linearly related in healthy WM and GM. Here, we explore deviations from this linear relationship in the tumor regions in 3 glioblastoma patients. Linear regression between 1/T1 and 1/H2O was performed in the healthy brain in the contralateral hemisphere and the obtained values were used to calculate predicted 1/H2O maps for the whole brain. Difference maps between predicted and true 1/H2O were calculated . Further, the importance of robust bias field correction techniques is demonstrated here by comparing two bias field correction approaches.1. B. M. Ellingson et al., “Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials,” Neuro-Oncol., vol. 17, no. 9, pp. 1188–1198, Sep. 2015, doi: 10.1093/neuonc/nov095.
2. Q. T. Ostrom et al., “The epidemiology of glioma in adults: a ‘state of the science’ review,” Neuro-Oncol., vol. 16, no. 7, pp. 896–913, Jul. 2014, doi: 10.1093/neuonc/nou087.
3. D. R. Johnson and B. P. O’Neill, “Glioblastoma survival in the United States before and during the temozolomide era,” J. Neurooncol., vol. 107, no. 2, pp. 359–364, Apr. 2012, doi: 10.1007/s11060-011-0749-4.
4. U. Nöth, J. Tichy, S. Tritt, O. Bähr, R. Deichmann, and E. Hattingen, “Quantitative T1 mapping indicates tumor infiltration beyond the enhancing part of glioblastomas,” NMR Biomed., vol. 33, no. 3, p. e4242, 2020, doi: 10.1002/nbm.4242.
5. A. Jurcoane et al., “Within-lesion differences in quantitative MRI parameters predict contrast enhancement in multiple sclerosis,” J. Magn. Reson. Imaging, vol. 38, no. 6, pp. 1454–1461, 2013, doi: 10.1002/jmri.24107.
6. G. D. Maurer et al., “Matching Quantitative MRI Parameters with Histological Features of Treatment-Naïve IDH Wild-Type Glioma,” Cancers, vol. 13, no. 16, p. 4060, Aug. 2021, doi: 10.3390/cancers13164060.
7. S. Lescher, A. Jurcoane, A. Veit, O. Bähr, R. Deichmann, and E. Hattingen, “Quantitative T1 and T2 mapping in recurrent glioblastomas under bevacizumab: earlier detection of tumor progression compared to conventional MRI,” Neuroradiology, vol. 57, no. 1, pp. 11–20, Jan. 2015, doi: 10.1007/s00234-014-1445-9.
8. C. Badve et al., “MR Fingerprinting of Adult Brain Tumors: Initial Experience,” Am. J. Neuroradiol., vol. 38, no. 3, pp. 492–499, Mar. 2017, doi: 10.3174/ajnr.A5035.
9. I. Blystad, J. B. M. Warntjes, Ö. Smedby, P. Lundberg, E.-M. Larsson, and A. Tisell, “Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema,” Sci. Rep., vol. 10, no. 1, Art. no. 1, Oct. 2020, doi: 10.1038/s41598-020-75105-6.
10. A. M. Oros-Peusquens, R. Loução, M. Zimmermann, K.-J. Langen, and N. J. Shah, “Methods for molecular imaging of brain tumours in a hybrid MR-PET context: Water content, T2∗, diffusion indices and FET-PET,” Methods, vol. 130, pp. 135–151, Nov. 2017, doi: 10.1016/j.ymeth.2017.07.025.
11. E. Englund, A. Brun, E. M. Larsson, Z. Györffy-Wagner, and B. Persson, “Tumours of the central nervous system. Proton magnetic resonance relaxation times T1 and T2 and histopathologic correlates,” Acta Radiol. Diagn. (Stockh.), vol. 27, no. 6, pp. 653–659, Dec. 1986, doi: 10.1177/028418518602700606.
12. P. P. Fatouros and A. Marmarou, “Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values,” J. Neurosurg., vol. 90, no. 1, pp. 109–115, Jan. 1999, doi: 10.3171/jns.1999.90.1.0109.
13. P. P. Fatouros, A. Marmarou, K. A. Kraft, S. Inao, and F. P. Schwarz, “In Vivo Brain Water Determination by T1 Measurements: Effect of Total Water Content, Hydration Fraction, and Field Strength,” Magn. Reson. Med., vol. 17, no. 2, pp. 402–413, 1991, doi: 10.1002/mrm.1910170212.
14. N. Gelman, J. R. Ewing, J. M. Gorell, E. M. Spickler, and E. G. Solomon, “Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: Relation to estimated iron and water contents,” Magn. Reson. Med., vol. 45, no. 1, Art. no. 1, 2001, doi: https://doi.org/10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2.
15. U. Nöth, E. Hattingen, O. Bähr, J. Tichy, and R. Deichmann, “Improved visibility of brain tumors in synthetic MP-RAGE anatomies with pure T1 weighting,” NMR Biomed., vol. 28, no. 7, pp. 818–830, 2015, doi: 10.1002/nbm.3324.
16. S. Volz, U. Nöth, A. Rotarska-Jagiela, and R. Deichmann, “A fast B1-mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T,” NeuroImage, vol. 49, no. 4, pp. 3015–3026, Feb. 2010, doi: 10.1016/j.neuroimage.2009.11.054.
17. J. Ashburner and K. J. Friston, “Unified segmentation,” NeuroImage, vol. 26, no. 3, Art. no. 3, Jul. 2005, doi: 10.1016/j.neuroimage.2005.02.018.
18. N. J. Tustison et al., “N4ITK: Improved N3 Bias Correction,” IEEE Trans. Med. Imaging, vol. 29, no. 6, Art. no. 6, Jun. 2010, doi: 10.1109/TMI.2010.2046908.
19. S. Volz, U. Nöth, A. Jurcoane, U. Ziemann, E. Hattingen, and R. Deichmann, “Quantitative proton density mapping: correcting the receiver sensitivity bias via pseudo proton densities,” NeuroImage, vol. 63, no. 1, Art. no. 1, Oct. 2012, doi: 10.1016/j.neuroimage.2012.06.076.